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Salient Pairwise Spatio-temporal Interest Points for
Real-time Human Action Classification

Mengyuan Liu, Hong Liu∗, Qianru Sun, Tianwei Zhang, Runwei Ding

Abstract—Real-time Human action classification in complex
scenes has applications in various domains such as visual
surveillance, video retrieval and human robot interaction. While,
the task is challenging due to computation efficiency, cluttered
backgrounds and intro-variability among same type of actions.
Spatio-temporal interest point (STIP) based methods have shown
promising results to tackle human action classification in complex
scenes efficiently. However, the state-of-the-art works typically
utilize bag-of-visual words (BoVW) model which only focuses
on the word distribution of STIPs and ignore the distinctive
character of word structure. In this paper, the distribution of
STIPs is organized into a salient directed graph, which reflects
salient motions and can be divided into a time salient directed
graph and a space salient directed graph, aiming at adding
spatio-temporal discriminant to BoVW. Generally speaking, both
salient directed graphs are constructed by labeled STIPs in pairs.
In detail, the “directional co-occurrence” property of different
labeled pairwise STIPs in same frame is utilized to represent the
time saliency, and the space saliency is reflected by the “geomet-
ric relationships” between same labeled pairwise STIPs across
different frames. Then, new statistical features namely the Time
Salient Pairwise feature (TSP) and the Space Salient Pairwise
feature (SSP) are designed to describe two salient directed graphs,
respectively. Experiments are carried out with a homogeneous
kernel SVM classifier, on four challenging datasets KTH, ADL
and UT-Interaction. Final results confirm the complementary of
TSP and SSP, and our multi-cue representation TSP+SSP+BoVW
can properly describe human actions with large intro-variability
in real-time.

Index Terms—Spatio-temporal interest point, bag-of-visual
words, co-occurrence

I. INTRODUCTION

Recently, human action classification from video se-
quences plays a significant role in human-computer interac-
tion, content-based video analysis and intelligent surveillance,
however it is still challenging due to cluttered backgrounds,
occlusion and other common difficulties in video analysis.
What’s worse, intro-variability among the same type of actions
also brings serious ambiguities. To tackle these problems,
many human action classification methods based on holistic
and local features have been proposed [1], [2]. Holistic features
have been employed in [3], [4], [5], where actions were treated

M. Liu, Q. Sun, R. Ding are with Faculty of Engineering Lab on Intelli-
gent Perception for Internet of Things(ELIP), Peking University, Shenzhen
Graduate School, 518055 China e-mail: liumengyuan@pku.edu.cn, qian-
rusun@sz.pku.edu.cn, dingrunwei@pkusz.edu.cn.

H. Liu, the corresponding author of this paper, is with Faculty of En-
gineering Lab on Intelligent Perception for Internet of Things(ELIP), Key
Laboratory of Machine Perception, Peking University, 518055 China e-mail:
(hongliu@pku.edu.cn).

T. Zhang is with Faculty of Nakamura-Takano Lab, Department of
mechanoinformatics, The University of Tokyo, 113-8685 Japan, e-mail:
(zhangtianwei5@gmail.com).

as space-time pattern templates by Blank et al. [3] and the
task of human action classification was reduced to 3D object
recognition. Prest et al. [4] focused on the actions of human-
object interactions, and explicitly represented an action as
the tracking trajectories of both the object and the person.
Recently, traditional convolutional neural networks (CNNs)
which are limited to handle 2D inputs were extended, and
a novel 3D CNN model was developed to act directly on raw
videos [5].

Comparing with holistic features, local features are robust
to shelters which need no pre-processing such as segmentation
or tracking. Laptev [6] designed a detector which defines
space-time interest points (STIPs) as local structures where the
illumination values show big variations in both space and time.
Four later local feature detectors namely Harris3D detector,
Cuboid detector, Hessian detector and Dense sampling were
evaluated in [7]. Recently, dense trajectories suggested by
Wang et al. [8] and motion interchange patterns proposed
by Kliper-Gross et al. [9] have shown great improvement to
describe motions than traditional descriptors though both need
extra computing costs. Besides using content of local features,
researches only using geometrical distribution of local fea-
tures also achieve impressive results for action classification.
Bregonzio et al. [10] described action using clouds of Space-
Time Interest Points, and extracted holistic features from the
extracted cloud. Ta et al. [11] concatenated 3D positions of
pairwise codewords which are adjacent in space and in time for
clustering. A bag of 3D points was employed by Li et al. [12]
to characterize a set of salient postures on depth maps. Yuan
et al. [13] extended R transform to an extended 3D discrete
Radon transform to capture distribution of 3D points. These
methods assume that each local feature equals to a 3D point,
and all local features have the only difference of location.

Bag-of-visual words(BoVW) introduced from text recogni-
tion by Schuldt et al. [14] and Dollar et al. [15] is a common
framework to extract action representation from local features.
STIPs are firstly extract from training videos and clustered
into visual words using clustering methods. BoVW is then
adopted to represent original action by a histogram of words
distribution, and to train classifiers for classification. Despite
its great success, BoVW ignores the spatio-temporal structure
information among words and thus leads to misclassification
for actions sharing similar words distribution. To make up for
above problem of BoVW, the spatio-temporal distribution of
words is explored. Words are treated in groups to encode
spatio-temporal information in [16], [17], [18]. Latent topic
models such as the probabilistic Latent Semantic Analysis
(pLSA) model are utilized by Niebles et al. [16] to learn
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the probability distributions of words. Cao et al. [17] applied
PCA to STIPs, and then model them with Gaussian Mixture
Models (GMMs). A novel spatio-temporal layout of actions,
which assigns a weight to each word by its spatio-temporal
probability, was brought in [18]. Considering words in pairs
is an effective alternative to describe the distribution of words.
From one point of view, pairwise words which are adjacent
in space and in time were explored by [19], [20], [11].
Local pairwise co-occurrence statistics of codewords were
captured by Banerjee et al. [19], and such relations were
reduced using Conditional Random Field (CRF) classifier.
Savarese et al. [20] utilized spatial-temporal correlograms to
capture the co-occurrences of pairwise words in local spatio-
temporal regions. To represent spatio-temporal relationships,
Matikainen et al. [21] formulated this problem in a Nave Bayes
manner, and augmented quantized local features with relative
spatial-temporal relationships between pairs of features. From
another point of view, both local and global relationships of
pairwise words were explored in [22], [23]. A spatio-temporal
relationship matching method was proposed by Ryoo et al.
[22] which explored temporal relationships (e.g. before and
during) as well as spatial relationships (e.g. near and far)
among pairwise words. In [23], co-occurrence relationships of
pairwise words were encoded in correlograms, which relied
on the computation of normalized google-like distances.

Frame t-1

Frame t

Frame t+1

Figure 1: A “push” action performed by a “pusher” and a “receiver”

In this work, the directional relationships of pairwise fea-
tures are explored to make up the problems of BoVW. It
is observed that human actions make huge senses in the
directional movement of body parts. From one aspect, the
spatial relationships among different parts, which are moving
at the same time, are directional. Besides, one part keeps
directionally moves from one place to another. Here, a “push”
action in Fig. 1 is used to illustrate observations, where green
points denote local features. As shown in Frame t + 1, the
pusher’s hands and the receiver’s head are moving at the
same same; meanwhile, the vertical location of hands is lower
than the head. The relationship between this type of pairwise
motions, which is according to the first observation, is called
directional co-occurrence. Crossing from Frame t−1 to Frame
t, the pusher’s hands keep moving forward. This type of
pairwise motions are also directional and reflect the second
observation. The observations both indicate the importance of
directional information for action representation. Hence the
attribute of mutual directions are assigned to pairwise STIPs

to encode structural information from directional pairwise
motions, generating new features called Time Salient Pairwise
feature (TSP) and Space Salient Pairwise feature (SSP).

Time Salient Pairwise feature: Time Salient Pairwise fea-
ture (TSP) is formed from a pair of STIPs which shows
“directional co-occurrence” property. In our previous work,
[24] and [25] have already employed this property for action
recognition. The TSP mentioned in this paper is a refined
and expanded version from the conference proceedings paper
[24]. TSP is compared with traditional BoVW and “Co-occur”
based methods in Fig. 2, where action 1, action 2 are simplified
as labeled points a, b and ti (i = 1, ..., 12) means time stamps.
Here, “Co-occur” adopted by Sun et al. [23] means only
using co-occurrence feature of pairwise words. BoVW fails
in the second and third rows when two actions share the same
histogram of words. “Co-occur” can distinguish actions in the
second row but also fails when two actions share the same
co-occurrence features. TSP adds extra directional information
to co-occurrence features, thereby avoiding two failing cases
of both BoVW and “Co-occur”. Comparing with [22], our
novelty lies in the use of direction instead of distance when
describing the pairwise co-occurrence. TSP also differs from
[20] and [23] in the use of both number and direction of
pairwise words.

1

1

11

a b

2
1

a b

1

a b a b

1

a

b

b

a

a

b

b

a

11

a b

11

a b

1

a b a b

1

a

b

b

a

a

b

b

a

11

a

b

a b

a

b

11

a b

1

a b a b

1

a

b

b

a

a

b

b

a

Co-occur TSPBoVW

a

b

b

t1

a

b

a

b

a

b

t4

t7 t8

t2 t3

t5 t6

Action 1 Action 2 SSP

11
2

a

b

a ba

b 1
2

a b

1

a b a b

1

a

b

b

a

a

b

b

a

t9 t12

a

t11

a

t10

1

1 1

Figure 2: Comparing representations of similar actions by four methods, namely Bag of
Visual Words (BoVW), Co-occurrence Feature (Co-occur), Time Salient Pairwise feature
(TSP) and Space Salient Pairwise feature (SSP).

Space Salient Pairwise feature: Note that TSP only cap-
tures the directional information between different labeled
pairwise words and ignores the relationships among same
labeled words. To encode this relationship, geometrical dis-
tribution of local features need to be involved. In this work,
any pair of words sharing same labels are linked into a vector,
and all vectors are as input instead of local descriptors like
Histogram of Gradient (HoG) [26] or Histogram of Flow
(HoF) [27] for traditionally BoVW model. This new feature is
named Space Salient Pairwise feature (SSP) which is different
from [11] in capturing global distribution of pairwise points.
As shown in the fourth row of Fig. 2, SSP provides spatial
location information for TSP to classify two actions with same
co-occurrence properties.

II. MODELING HUMAN ACTIONS AS DIRECTED GRAPHS

In graph theory, a directed graph refers to a set of nodes
connected by edges, where edges have directions associated
with them. In this paper, directed graphs are employed to
represent the human action in a video V0, and the main work
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lies in the determination of nodes, the choice of edges and the
assignment of directions between nodes. Some symbols used
in following sections are listed in Table I with their meanings.

Table I: Illustrating the meanings of symbols

Symbol Meaning
F0 number of frames for video V0

N number of training videos
It the tth frame of a video

V0 = {It}F0
t=1 a video containing an action

M number of STIPs for V0
S0 STIPs from V0
des a descriptor for one STIP
D dictionary for feature quantization

pti = (xi, yi, ti, labeli) one STIP with label labeli
S̃0 = {pti = (xi, yi, ti, labeli)}Mi=1 labeled STIPs from V0

Gs =< P, Es > an undirected graph
Es =< Ess, Est > salient edges
Gstd =< P,Ast > a time salient directed graph
Gssd =< P,Ass > a space salient directed graph

K clusters for BoVW
Tx, Ty , T threshold value for TSP
N distribution map for TSP
K2 clustering centers for SSP
VE0 all possible SSP in S̃0

HTSP , HSSP TSP feature and SSP feature
H representation for V0

An action sequence can be denoted by a cloud of Spatio-
temporal interest points (STIPs) in the field of action analysis
using local features. By referring to a dictionary D, STIPs are
clustered into different labels and each label stands for a kind
of movement. Here, all labeled STIPs are defined as nodes of
the directed graphs. To construct dictionary D, a set of training
videos {Vn = {It}Fn

t=1}Nn=1 are needed, where Vn is the nth
video with Fn frames. STIPs Sn = {(x, y, t, des) | (x, y) ∈
It, t ∈ (1, ..., Fn)} are detected from video Vn, where x, y
refer to horizontal and vertical coordinates, t is the index of
frame, des ∈ RN denotes the N-dimensional feature vector
of the STIP. Then, all des from S = {S1, ...,Sn, ...,SN} are
clustered into K clusters D = {des1, ..., desk, ..., desK} using
algorithms like k-means. To label STIPs S0 = {(x, y, t, des) |
(x, y) ∈ It, t ∈ (1, ..., F )} from the video V0 = {It}F0

t=1,
each des in S0 is labeled by finding the nearest center in
dictionary D. If the nearest cluster is desk, then des is
labeled k. Till now, the video V0 is represented by M labeled
points S̃0 = {pti = (xi, yi, ti, labeli) | (xi, yi) ∈ It, ti ∈
(1, ..., F0), labeli ∈ (1, ...,K)}Mi=1.

To describe the spatio-temporal distribution of S̃0, points are
considered in pairs for simplicity and efficiency. By connecting
any pair of points from S̃0, an undirected graph G =< P, E >
is defined to model video V0, where P = {pti}Mi=1 and
E = {edge(pti, ptj)|(∀i, j ∈ 1, ...,M) ∧ (i 6= j)}. It is noting
that edge(pti, ptj) is the edge between pti and ptj . Since
directly using G to represent V0 is not time efficient, a new
undirected graph Gs =< P, Es > with less edges is defined
by splitting E into salient edges Es and non-salient edges
Eu. Moreover, salient edges is split into time salient edges
Est and space salient edges Ess. The time saliency refers to
two different labeled nodes appearing at the same time, which
is also called co-occurrence, and the space saliency denotes
two same labeled nodes appearing cross different frames. The
saliency of an edge edge(pti, ptj) ∈ Es is formulated as
follows,

edge(pti, ptj) ∈ Est ⇐⇒ ti = tj ∧ labeli 6= labelj

edge(pti, ptj) ∈ Ess ⇐⇒ ti 6= tj ∧ labeli = labelj
(1)

An example of Es is shown in Fig. 3, where gray edges
belongs to Ess and black edges pertain to Est. In order to
give edges in Es quantitative descriptions, different direction
assignment methods are respectively applied on Ess and Est
, generating in two directional edge sets Ass and Ast (Fig.
3). Then, the undirected graph Gs is changed to time salient
directed graph Gstd =< P,Ast > and space salient directed
graph Gssd =< P,Ass >.

Training Testing

feature space STIPs

Figure 3: Representing a human action as a directed graph with salient edges

III. TIME SALIENT DIRECTED GRAPH

It is observed that pairwise different movements appearing
at the same time are a good feature to distinguish an action.
For example, an action “Blow Dry Hair” from UCF101 dataset
[28] usually refers one person moves his hand and hair
simultaneously. When an action is denoted as a cloud of
labeled STIPs, this observation can be represented by the co-
occurrence of different labeled pairs, which is captured by time
salient graph Gst. To describe Gst, directions are assigned to
all edges and a directed graph Gstd is formed. In this part, a
simple direction assignment criteria is established to convert
Gst to Gstd . Then, a new descriptor called Time Salient Pairwise
feature (TSP) is introduced, involving not only nodes but also
the directional edges in Gstd . Finally, the statistics of TSP is
utilized to represent Gstd .

A. Time Salient Pairwise feature
The criteria of direction assignment between STIPs are

introduced before defining TSP. Suppose STIPs of a given
sequence are clustered into K words. Sketch in Fig. 4 shows
how to assign direction for word A and word B. Although the
vector formed by A and B provides exact spatial information,
it considers little about the noise tolerance. Instead, whether
the direction is from A to B or B to A is a more robust feature.
Vertical or horizontal relationship is utilized to figure out
the direction between A and B with two reference directions
defined from up to down and left to right respectively. It is
noted that human actions like waving right hand and waving
left hand are usually symmetric. Their directions are opposite
in horizontal direction but same in vertical direction. Thus,
we consider the vertical relationship priority to the horizontal
one to eliminate the ambiguities of symmetric actions. Let
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∆x and ∆y represent projector distances and Tx, Ty stand
for threshold values (in Fig. 4). If A and B are far in vertical
direction (∆x ≥ Tx), the reference direction is set from up to
down. In contrast (∆x < Tx), the relationship in the vertical
direction is not stable and thus discarded. The horizontal
relationship is checked in the same way. As for A and B in
Fig. 4, since ∆x ≥ Tx and B is on the top of A, the vertical
relationship is selected and the direction is assigned from B
to A, which is in accordance with the reference direction.
This criteria ignores same labeled pairs like E and F in Fig.
4, and also discards any pair of points like C and D that
are too close to each other. Summarily speaking, the criteria
to assign direction for points pti = (xi, yi, ti, labeli) and
ptj = (xj , yj , tj , labelj) are as follows,

if ti = tj ∧ labeli 6= labelj (∀pti, ptj ∈ P)

if abs(xi − xj) ≥ Tx

if xi < xj then i→ j else j → i

elseif abs(yi − yj) ≥ Ty

if yi < yj then i→ j else j → i

(2)

where i→ j indicates the direction.
After direction assignment, the reserved directions are dis-

criminative to represent directional co-occurrent movements.
Each direction with two linked nodes construct a new de-
scriptor called Time Salient Pairwise feature (TSP). Taking
A and B in Fig. 4 as an example, two assumptions are
made. a) A and B satisfy the direction assignment criteria
in Formula 2; b) the direction is from B to A. Then a
TSP TSPlabelB ,labelA = (labelB , labelA, labelB → labelA)
is established, which records both labels and the direction
information between two labels.

F

false

discard

C

Frame t

X

o

∆ x < Tx,  ∆ y ≤ Ty

∆
 x

 ≥
 T

x

Y

B

A

D

true
E

ignore

Figure 4: Direction assignment criterion for pairwise STIPs in the same frame

B. Time Salient Directed Graph
For a given video V0, M labeled STIPs are detected and

stored in S̃0 = {pti = (xi, yi, ti, labeli) | (xi, yi) ∈ It, ti ∈
(1, ..., F0), labeli ∈ (1, ...,K)}Mi=1. Let pti = (xpti , ypti , tpti)
represent a word labeled i appearing on frame tpti . Horizontal
and vertical coordinates are xpti and ypti . Then, the time
salient directed graph Gstd =< P,Ast >, where Ast =
{TSPlabeli,labelj | i, j ∈ (1, ...,M)}.

To describe Gstd , ϕ(pti, ptj) is firstly used to record whether
there exists TSPlabeli,labelj between pti and ptj ,

ϕ(pti, ptj) =

 ζ(pti, ptj), if (|∆x| ≥ Tx ∧ xi < xj) ∨
(|∆x| < Tx ∧ |∆y| ≥ Ty ∧ yi < yj),

0, otherwise
(3)

where ∆x = xi − xj , ∆y = yi − xj , threshold Tx, Ty
are empirical values. It is worth noting that the function of
Formula 3 is equal to that of Formula 2. In Formula 3,
ζ(pti, ptj) is defined as,

ζ(pti, ptj) =

{
1, if labeli 6= labelj ∧ ti = tj
0, otherwise

(4)

Co-occurrence literally means happening on the same frame.
While, in an action sequence, movements constituting the
whole action last several sequential frames. To encode this
temporal relationship, we treat adjacent several frames as a
whole to extract co-occurrence features. Thus, ζ(pti, ptj) is
reformulated as,

ζ(pti, ptj) =

{
1, if labeli 6= labelj ∧ |ti − tj | < Tt

0, otherwise
(5)

If ζ(pti, ptj) in Formula 5 equals one, a co-occurrence feature
is defined between pti and ptj . Threshold Tt is an empirical
value determining the number of adjacent frames.

The Gstd contains K ·K types of TSP by choosing K kinds
of labels as start point or end point. Matrix N in Formula 6
records the number distribution of all types of TSP in Gstd ,

N (m,n) =
∑

∀pti∈S̃m
0 ,∀ptj∈S̃n

0

ϕ(pti, ptj)

s.t. m, n ∈ (1, ...,K)
(6)

The distribution map N is most related to the co-occurrent
map [23] which records the number of co-occurrence between
STIPs labeled m and n for location (m,n). In order to
intuitively show the difference, a simple action “eating a
banana” is used. Two result maps namely distribution map
and co-occurrent map are shown in Fig. 5. It is shown that
element values in (m,n) and (n,m) are the same in co-
occurrent map while different in the distribution map, and
element value in (m,n) from co-occurrent map equals the
average value between element values in (m,n) and (n,m)
from distribution map. Therefore, distribution map encodes
more information than co-occurrent map.

(a) distribution map (asymmetry) (b) co-occurrent map (symmetry)

Figure 5: Distribution map of TSP and co-occurrent map are respectively shown in (a)
(b). To facilitate observation, STIPs are extracted and clustered to 30 labels.

Till now, the directed graph Gstd is reduced to a distribution
map N with K · K dimension which is still high. What’s
worse, element N (m,n) in N is related to the number of m
and n. Directly using N as video representation should be
at slow speed and is sensitive to the effected by number of
STIPs. Therefore a dimension reduction method which also
handles the number of STIPs is needed. As shown in Fig. 6,
Gstd is convert to a new directed graph T st

d by merging same
labeled nodes. The in-degree and out-degree are introduced
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Figure 6: Extracting statistics from distribution map N of TSP

as statistics for each node in T st
d . In mathematics, and more

specifically in graph theory, the number of head endpoints
adjacent to a node is called the in-degree of the node and the
number of tail endpoints adjacent to a node is its out-degree.
In Formula 7, P (TSP out

m |N , C) represents the probability of
appearing m as a start point, where N (m,n) refers to the
number of TSP out

m and C(m) is the number of m.

P (TSP out
m |N , C) =

∑K
n=1N (m,n)∑K

n=1{C(m) · C(n)}
(7)

Similarly, P (TSP in
m |N , C) in Formula 8 represents the prob-

ability of m being the end point.

P (TSP in
m |N , C) =

∑K
n=1N (n,m)∑K

n=1{C(m) · C(n)}
(8)

Above two probability values are combined in Formula 9 to
construct video representation HTSP with K × 2 dimension.
Using HTSP instead of histogram N , the video representation
is compressed at a ratio of K/2.

HTSP =
{[
P (TSP out

m |N , C)
]K
m=1

,
[
P (TSP in

m |N , C)
]K
m=1

}
(9)

In this section, we focus on pairwise features and extracting

directional information from them to reflect the natural struc-
ture of human actions that our motion parts are directional.
Time Salient Pairwise feature (TSP) is proposed to describe the
relationships between pairwise STIPs on the same frame, and
only the pairs with different labels are considered. Obviously,
TSP ignores the relationships between pairwise STIPs with
same labels in Gssd , and brings ambiguous to distinguish
actions with similar Gstd . Thus, this paper proposes another
descriptor called Space Salient Pairwise feature (SSP) to
describe Gssd .

IV. SPACE SALIENT DIRECTED GRAPH

To describe an action sequence, a cloud of STIPs are ex-
tracted and organized in a directional graph Gsd = {Gtsd ,Gssd }.
A feature called TSP is proposed to captures directional
information in Gtsd . As for Gssd , another feature called Space
Salient Pairwise feature (SSP) is introduced to encode the
relationships between pairwise STIPs sharing same labels.
And the histogram of quantized SSP is simply utilized as the
representation of Gssd . For an action constructed by some main
movements, labeled STIPs are dominated by a minor group
of labels. Therefore, relationships among same labeled STIPs
are important to describe this kind of actions. Take action
“boxing” from KTH dataset [14] as an example, which means
stretch out a hand and then withdraw it rapidly and periodicity.
This action is dominated by the “clenched fist” which appears
repeatedly. Obviously, the distribution of the “clenched fist”
encoded by SSP is vital to represent “boxing”.

A. Space Salient Pairwise feature

For same labeled STIPs appearing on different frames,
Space Salient Pairwise feature is defined. Given two labeled
STIPs pti = (xpti , ypti , tpti) and ptj = (xptj , yptj , tptj ), a
SSP SSPpti,ptj = (xi − xj , yi − yj , ti − tj) · δ(ti − tj) is
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SUBMISSION TO CAAI TRANS. ON TIT 6

established if ti 6= tj , where

δ(ti − tj) =

{
1, if ti < tj ;
−1, if ti > tj

(10)

Intuitively speaking, SSPpti,ptj indicates the vector with the
point which appears earlier to be a start point.

B. Space Salient Directed Graph
For a given video V0, M labeled STIPs are detected and

stored in S̃0 = {pti = (xi, yi, ti, labeli) | (xi, yi) ∈
It, ti ∈ (1, ..., F0), labeli ∈ (1, ...,K)}Mi=1. Note that S̃0 =
{S̃10 , ..., S̃k0 , ..., S̃K0 }, and S̃k0 stores all STIPs labeled k. The
directed graph Gssd =< P,Ass >, where Ass = {SSPpti,ptj |
i, j ∈ (1, ...,M)}. Let VE0 involve all possible SSP in S̃0,
which is defined as follows,

VE0 =
⋃

m∈(1,...,k)

⋃
∀pti,ptj∈S̃m

0

SSPpti,ptj (11)

And VE0 is clustered into K2 centers, namely
{VE10, ...,VE

K2
0 }. Then, Gssd is represented by HSSP ,

which simply tallies K2 clusters of VE0.
Using HSSP to describe Gssd is inspired by traditional

BoVW model, which utilizes the number histogram of STIPs
and has achieved markable results in human action recogni-
tion. Specifically, this method refers to obey the BoVW model
and to use pairwise features instead of traditional HOG-HOF
features for clustering and quantization. Detailed steps for
computing HSSP are illustrated in Fig. 7. STIPs are firstly
extracted from an input action sequence and assigned labels.
All STIPs are divided into different channels by their labels.
In each channel, a vector is formed between any pair of
STIPs from different frames. Then vectors are collected from
all channels to construct a vectors bank, which refers to the
edges of Gssd . Finally, vectors in the bank are clustered and a
histogram is formed to represent Gssd .

A human action video V0 is described using salient di-
rected graph in Algorithm 1. {Vn = {It}Fn

t=1}Nn=1 are N
videos containing various of labeled actions for training, and
two thresholds K,K2 are pre-defined for k-means clustering
method. STIPs are extracted and clustered into labels from
line 1 to line 7. A vector set VEn is also formed for video
Vn in line 8. To extract representation HTSP from video
V0 = {It}F0

t=1, the procedure is detailed in Algorithm 1
from line 10 to line 23. Symbol ptm in line 13 denotes any
point labeled m. Function ζ(pti, ptj) is shown in Formula 5,
which is a part of Formula 6 in line 17. P (TSP out

m |N , C)
in line 20 means the probability of label m appearing as a
start point. P (TSP in

m |N , C) in line 21 means the probability
of label m appearing as an end point. It should be noted
that P (TSP out

m |N , C) plus P (TSP in
m |N , C) is no more

than one, since the relationships between some pairs are
discarded taking word pair (C, D) in the sketch of Fig. 4 as
an example. If relationships between points labeled m and
all other points are considered, the value P (TSP out

m |N , C)
plus P (TSP in

m |N , C) should equal one. Using space salient
pairwise feature to extract action representation named HSSP

from testing video V0, the procedure is illustrated in Algorithm
1 from line 24 to line 26.

Algorithm 1 Modeling by Salient Directed Graph

Require: {Vn = {It}Fn
t=1}Nn=1, V0, K,K2, Tt, T

Ensure: H,HTSP , HSSP

1: for n = 0 to N do
2: extract STIPs Sn = {(x, y, t, des) | (x, y) ∈ It, t ∈

(1, ..., Fn)} from video Vn
3: end for
4: compute the visual dictionary D = {des1, ..., desK}
5: for n = 0 to N do
6: label STIPs in Sn using dictionary D
7: S̃n = {S̃k

n}Kk=1, S̃k
n stores all STIPs labeled k from Sn

8: VEn = {VEkn}Kk=1, VEkn: vectors formed by STIPs from S̃i
n

9: end for
10: C(k): the number of STIPs labeled k (k = 1, ...,K) in S0
11: Tx ← T , Ty ← T
12: for m = 1 to K,n = 1 to K do
13: for ∀ptm ∈ S̃m

0 , ptn ∈ S̃n
0 do

14: get ζ(ptm, ptn) by Formula 5
15: calculate ϕ(ptm, ptn) by Formula 3
16: end for
17: get N (m,n) by Formula 6
18: end for
19: for m = 1 to K do
20: compute P (TSP out

m |N , C) by Formula 7
21: similarly get P (TSP in

m |N , C) by Formula 8
22: end for
23: calculate HTSP by Formula 9
24: cluster VE = {VE1, ...,VEn, ...,VEN} into K2 clusters
25: label VE0 using KNN method and K2 centers from step 25
26: HSSP is the histogram of labeled vectors in VE0
27: return H = {HTSP , HSSP }

TSP and SSP are naturally combined for their ability of
capturing structural relationships of different kinds of STIPs.
On one hand, TSP only focus on different labeled pairwise
STIPs, while it ignores the spatial temporal constraints which
are brought in by same labeled pairs. Additionally, SSP
provides extra relationships among same labeled pairs, and
thus is compatible with TSP. Let H = {HTSP , HSSP } stand
for the combination form of both methods. Moreover, The
combination form of H and traditional BoVW, which provides
general statistical information of STIPs, is also constructed.

For a given video V0, let M denote the number of STIPs
extracted from V0 with F0 frames, and these STIPs are clus-
tered into K clusters. Suppose that there are equal number of
STIPs in each cluster, and that the number of STIPs are equal
for each frame. In this case, the number of pairwise feature for
calculating TSP and SSP are respectively C2

K · ( M
K·F0

)2 · F0

and C2
F0
· ( M

K·F0
)2 · K. The time complexity for calculating

final representation H is O(C2
K · ( M

K·F0
)2 · F0) + O(K) +

O(C2
F0
· ( M

K·F0
)2 · K) = O(M2), where O(K) denotes the

time complexity of the dimension reduction method for TSP.
Since the main time cost is to calculate TSP and SSP, reducing
the number of pairwise feature will improve the efficiency of
Algorithm 1. To this end, feature selection methods like [29],
[30] can be applied.

To improve the speed of calculating TSP and SSP, we
convert main calculation into several matrix operations which
is suitable for MATLAB in the experiments. The main com-
putation shared by TSP and SSP is to compute all pairwise
distances among a set of points {xi}Mi=1, where xi denotes the
coordinate of point i. Let X1,M equals [x1, ..., xM ], which
denotes a matrix with one row and M columns. We form
a matrix ZM,M = AM,1X1,M , where all elements in AM,1



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
 
 
 

SUBMISSION TO CAAI TRANS. ON TIT 7

equals one. Then the distance matrix equals Z − Z ′
, whose

element in ith row and in jth column records the distance
between point xi and xj . Comparing with Algorithm 1 which
directly compares any pair of points and thus cost C2

M times
of computation, only three matrix operations are needed here
to obtain the distance matrix by AX − (AX)′.

V. EXPERIMENTS AND DISCUSSIONS

The proposed descriptors are evaluated on four challeng-
ing datasets: KTH dataset in [14], ADL dataset in [31]
and UT-Interaction dataset in [22]. KTH dataset contains
600 videos of 25 persons performing 6 actions: “walk-
ing”,“jogging”,“running”,“boxing”, “hand waving” and “hand
clapping”. Each action is repeated 4 times with homogeneous
indoor/outdoor backgrounds. ADL dataset contains 150 videos
of five actors performing ten actions: “answer a phone”, “chop
a banana”, “dial a phone”, “drink water”, “eat a banana”,
“eat snacks”, “look up a phone number in a phone book”,
“peel a banana”, “eat food with silverware” and “write on
a white board”. Each action is repeated three times in the
same scenario. Segmented version of UT-Interaction is utilized
which contains six categories: “hug”, “kick”, “point”, “punch”,
“push” and “shake-hands”. “Point” is performed by single
actor and other actions are performed by actors in pairs. All
actions are repeated ten times in two scenes resulting in 120
videos. Scene-1 is taken in a parking lot with little camera
jitter and slightly zoom rates. In scene-2, the backgrounds are
cluttered with moving trees, camera jitters and passers-by.
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L

              Boxing                 Clapping                   Waving                      Jogging                    Running                  Walking

           Answer a phone             Chop a banana               Dial a phone                   Drink water                  Eat a banana

      Hug                            Kick                  Point                  Punch                         Push                   Shake-hands

Basketball              Drumming              HorseRiding         WalkingWithDog            Kayaking            BaseballPitch

YoYo                    Rowing               TennisSwing                   Punch               PizzaTossing            Nunchucks 

Figure 8: Human action snaps from four datasets: KTH, ADL and UT-Interaction.

Several action snaps from above datasets are shown in Fig.
8, where inter-similarity among different types of actions are
observed. Actions like “walking”,“jogging” and “running” are
similar in KTH dataset, and actions like “answer a phone” and
“dial a phone” are alike in ADL dataset. Besides the similarity
between action “kick” and “punch” in UT-Interaction dataset,
the complex filming scenes in UT-Interaction scene-2 also
brings difficulty for classification. In following, KTH, ADL
and UT datasets are utilized to evaluate our method against
inter-similarity among different types of actions, and to eval-
uate the efficiency of proposed algorithm. “UT” involves both
scenes in UT-Interaction dataset.

This work applies Laptev’s detector in [14] obeying original
parameter setting to detect STIPs and uses HOG-HOF in [32]
to generate 162 dimension descriptors (90 dimension for HOG

Table II: Number of clusters for different datasets

XXXXXXXXMethod
Dataset KTH ADL UT

TSP 200 100 200
SSP 100 100 200
BoVW 900 500 1800

and 72 dimension for HOF). After extracting 800 points from
each video, k-means clustering is applied to generate visual
vocabularies. In order to obtain maximum average recognition
rates, the number of clusters for DPF, BPF and BoVW
on different datasets are set in Table II. Recognition was
conducted using a non-linear SVM with a homogeneous kernel
in [33]. In order to keep the reported results consistent with
other works, we obey the same cross-validation method with
[14], [31] and [22]. Since random initialization is involved in
clustering method, all confusion matrices are average values
over 10 times running results.

A. TSP Evaluation
Different parameters Tt and T for TSP are tested on KTH,

ADL and UT datasets, with one parameter changing and the
other parameter in default values: Tt = 0, T = 0. Parameter
Tt is the number of adjacent frames. In other words, each
frame with its adjacent Tt frames are considered as a whole
to extract TSP for current frame. In Formula 3, Tx and Ty
are both set to T , which is the threshold value both for the
horizontal and vertical directions.

As shown in Fig. 10, Tt ranges from 0 to 4 at 2 intervals,
and T ranges from 0 to 10 at 5 intervals. Taking UT dataset
which contains clustered backgrounds and moving disruptors
as an example, the recognition rate slightly improves when
Tt grows, and keeps quite still when T changes. This phe-
nomenon shows that the performance of TSP is not sensitive to
the changes of parameters Tt, T in a large range. In this work,
all following experiments are conducted with Tt = 0, T = 0.
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Figure 10: Classification precisions using TSP with different parameter settings.

Representation TSP and BoVW are separately compared
on KTH dataset (Fig. 9 (a)), ADL dataset (Fig. 9 (b)) and
UT dataset (Fig. 9 (c)) using confusion matrices. Generally
speaking, TSP achieves less average recognition rates than
BoVW. Meanwhile, TSP+BoVW works better than both TSP
and BoVW, which shows the complementary property of
TSP to traditional BoVW. The method of TSP+BoVW shows
0.67% higher than BoVW on KTH dataset, 1.34% higher on
ADL dataset and 0.83% higher on UT dataset.

In Fig. 9 (a3), TSP improves the discrimination between
“jogging” and “running” in KTH dataset. TSP also reduced
the errors among “answer a phone” and “dial a phone” in
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Figure 9: Comparing three methods namely BoVW(a1,b1,c1), TSP(a2,b2,c2) and BoVW+TSP(a3,b3,c3) on different datasets.

Rochester since extra spatial information is encoded. In UT
dataset, most errors happens between “kick” and “punch”
in Fig. 9 (c1). These two actions appear similar to BoVW
which focus on describing local features, since they share
similar basic movement “stretch out one part of body (hand
or leg) quickly towards others”. Seeing from human’s view,
“punch” refers to leg and “kick” refers to hand. Thus, their
spatial distribution of movements, which are captured by
spatial temporal layout of STIPs, are different. Based on
this observation, TSP improves the discrimination between
these two actions by adding directional spatial information to
BoVW. This may account for the the better performance of
distinguish “punch” and “kick” in Fig. 9 (c1, c3).

As can be seen in Fig. 9 (c3), the recognition rate of “punch”
drops when compared with BoVW. The reason lies in that
TSP brings some ambiguities to BoVW to distinguish “punch”
and “shake-hands”. To solve this problem, SSP is utilized to
make up the limitations of TSP. The effect of SSP to improve
the recognition precisions of “punch” and “shake-hands” are
detailed in next section.

B. SSP Evaluation
Obeying procedures in Algorithm 1, we firstly set cluster

number K the same as Section V-A to cluster STIPs into
labels. After obtaining vectors from all channels, these vectors

are then clustered into K2 clusters. The value of K2 with best
recognition rates are shown in Table II.

Representation SSP and BoVW are separately compared
on KTH dataset (Fig. 11 (a)), ADL dataset (Fig. 11 (b)) and
UT dataset (Fig. 11 (c)) using colored histograms. Generally
speaking, SSP achieves less average recognition rates than
BoVW. Meanwhile, SSP+BoVW works better than both SSP
and BoVW, which shows the complementary property of
SSP to traditional BoVW. The method of SSP+BoVW shows
1.84% higher than BoVW on KTH dataset, 3.34% higher on
ADL dataset and 5.00% higher on UT dataset.

As shown in the UT dataset of Fig. 11, the recognition
precisions of “punch” and “shake-hands” are improved when
comparing with traditional BoVW. The reason lies in that SSP
encodes the movements of same types of movements, which
are neglected by BoVW. In next section, SSP is combined with
TSP and BoVW, and the final representation outperforms SSP,
TSP and BoVW.

C. Comparison with Related Works
Table III - Table V compares the performances of proposed

method with state-of-the-arts and cluster number K is marked
with classification rate. Since parameters like the number K of
k-means clustering method differs in different algorithms, the
accuracy refers the classification rate with optimal parameters.
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Figure 11: Comparing BoVW, SSP and BoVW+SSP on different datasets.

KTH dataset is originally utilized by [14], and the cited
paper is marked in green color in Table III. Our results on
KTH dataset are most directly comparable to the method in
[14] and [34], which both utilize the laptev’s local feature
detector and the BoVW framework. Our BoVW shows much
higher than [14] since Laptev’s HOG/HOF descriptor and
a non-linear SVM with a homogeneous kernel in [33] are
adopted. TSP+BoVW, SSP+BoVW achieves average accura-
cies of 94.50% and 95.67%. Improvements of 2.70% and
3.87% are respectively achieved over [34], which can be
attributed to our addition of spatial temporal distribution
information. TSP+SSP+BoVW achieves average accuracy of
95.83%, which is respectively 1.03% and 0.83% higher than
state-of-the-art works [35] and [36].

Table III: Comparing with related works on KTH

Methods Accuracy(%) Details
LF+SVM [14] 71.70 Schuldt et al. (2004)

LF+SP+non-linear SVM [34] 91.80 Laptev et al. (2008)
MBH+STP [37] 95.30 Wang et al. (2013)

RMD+Mode Finding [38] 92.10 Oshin et al. (2014)
RMD+Outlier Detection [38] 94.00 Oshin et al. (2014)
Multi-ch. Gabor+SOD [35] 94.80 Zhang et al. (2014)

STLPC [36] 95.00 Shao et al. (2014)
BoVW 93.83 K=900

BoVW+TSP 94.50 K=900,200
BoVW+SSP 95.67 K=900,100

BoVW+TSP+SSP 95.83 K=900,200,100

ADL dataset is originally utilized by [31], which main focus
on people’s interaction with objects in the kitchen. In the
dataset, actions like “answer a phone” and “dial a phone” looks

similar in motions, which leads to an average accuracy of only
67.00% using “Velocity Histories” feature in [31]. It is noted
that the background in ADL keeps still, and an “Augmented
Velocity Histories” is proposed in [31] which achieves an aver-
age accuracy of 89.00%. Without using structural information
from the still background, our methods all performs better
than [31], shown in Table IV. What’s more, TSP+SSP+BoVW
achieves average accuracy of 95.33%, which is 3.33% higher
than state-of-the-art work [38]. Comparing with our previous
work [25], additional 4.00% accuracy is gained, which shows
the importance of SSP to TSP and BoVW.

Table IV: Comparing with related works on ADL

Methods Accuracy(%) Details
Velocity Histories [31] 67.00 Messing et al. (2009)

Augmented Velocity Histories [31] 89.00 Messing et al. (2009)
PF-HCRF [39] 88.67 Banerjee et al. (2014)

RMD+Mode Finding [38] 90.70 Oshin et al. (2014)
Weighted Pairwise STIPs [25] 91.33 Liu et al. (2014)
RMD+Outlier Detection [38] 92.00 Oshin et al. (2014)

BoVW 91.33 K=500
BoVW+TSP 92.67 K=500,100
BoVW+SSP 94.67 K=500,100

BoVW+TSP+SSP 95.33 K=500,100,100

UT dataset is originally utilized by [22], which main focus
on people’s interaction with others. Since moving trees and not
related persons are also included in the scenes, this dataset
can be used to evaluate method’s robustness to cluttered
backgrounds. As shown in Table V, our best result achieves
92.50% accuracy, which is 4.9% higher than recent work [40].
Since [41] mainly focus on the speed of the algorithm, the
local feature detector and clustering steps are implemented
using more fast method like V-FAST interest point detector
and semantic texton forests. To ensure a fair comparison with
our method, we compare the time cost of extracting features
with [41] in next section.

Table V: Comparing with related works on UT

Methods Accuracy(%) Details
SRM [22] 70.80 Ryoo et al. (2009)

PSRM+BOST [41] 83.33 Yu et al. (2010)
FV(32) [40] 87.60 Kantorov et al. (2014)

BoVW 84.17 K=1800
BoVW+TSP 85.00 K=1800,200
BoVW+SSP 89.17 K=1800,200

BoVW+TSP+SSP 92.50 K=1800,200,200

Recently, dense trajectory [8] are widely used in off-line
human action recognition, and achieves better accuracy than
HOG/HOF features. However, methods in [8] requires longer
time to extract dense trajectories and to form the BoVW fea-
tures, which are not suitable for real-time applications. Thus,
we detect the sparse Harris3D points and extract HOG/HOF
features using Laptev’s detector and descriptor instead of
using dense trajectory. The computation efficiency of proposed
features TSP and SSP are evaluated in next part.

Final recognition rates using multi-cue representation are
shown in Fig. 12, and there still exists ambiguities among
similar actions. In ADL dataset, “answer a phone” and “dial a
phone” are similar naturally since they contains same move-
ments like picking up a phone and bring it to the ear. “Peel



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
 
 
 

SUBMISSION TO CAAI TRANS. ON TIT 10

1.0 .00 .00 .00 .00 .00

.00 .90 .00 .10 .00 .00

.00 .00 .95 .00 .00 .05

.00 .00 .00 .85 .10 .05

.00 .00 .00 .00 1.0 .00

.05 .00 .10 .00 .00 .85

hug

kick

point

punch

push

shake.

hug
kick

point
punch

push
shake.

avgRate = 0.9250

.87.00.07.00.07.00.00.00.00.00

.00.93.00.00.00.00.00.00.00.07

.13.00.80.00.00.00.00.00.00.07

.00.00.001.0.00.00.00.00.00.00

.00.00.00.001.0.00.00.00.00.00

.00.00.00.00.001.0.00.00.00.00

.00.00.00.00.00.001.0.00.00.00

.00.00.00.00.00.00.07.93.00.00

.00.00.00.00.00.00.00.001.0.00

.00.00.00.00.00.00.00.00.001.0

ans.

chop.

dial.

drink.

eatB.

eatS.

lookup.

peel.

use.

write.

ans.
chop.

dial.
drink.

eatB.

eatS.

lookup.

peel.
use.

write.

avgRate = 0.9533

1.0 .00 .00 .00 .00 .00

.02 .98 .00 .00 .00 .00

.01 .02 .97 .00 .00 .00

.00 .00 .00 .90 .08 .02

.00 .00 .00 .09 .90 .01

.00 .00 .00 .00 .00 1.0

boxing

handclapping

handwaving

jogging

running

walking

boxing

handclapping

handwaving

jogging

running

walking

avgRate = 0.9583

(d) UCF101(a) KTH (b) ADL (c) UT

avgRate = 0.5579

Figure 12: Recognition result on KTH (a), ADL (b), UT (c) combining three methods BoVW, TSP and SSP.

a banana” and turning pages in “look up a phone a number”
also look similar in having same hand motions.
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Figure 13: Key frames of three actions from ADL and UT are illustrated to show
misclassification.

In Fig. 13 (a), the detected STIPs are too sparse for same
actions, which also response for imperfect results. In Fig.
13 (b,c), cluster backgrounds and passers-by bring in extra
STIPs, which result in more ambiguities for representation and
classification. Despite these difficulties, our method obtains
remarkable results by adding extra spatial structural informa-
tion to traditionally BoVW method, e.g., better discriminative
results between “answer a phone” and “dial a phone” are
shown in Fig. 12 (b).

D. Computation Efficiency and Potential Applications
The efficiency of calculating TSP and SSP on different

datasets are evaluated in Fig. 14, where parameter K is in
default for both SSP and TSP. Meanwhile, TSP is evaluated
with different parameters F and T . The computation time was
estimated with MATLAB R2011a (The MathWorks, Natick,
MA) on a PC laptop with a 3.00 GHz Intel Core i5-2320
CPU and 4 GB of RAM. Two indicators namely Td and Tf are
utilized for evaluation, which mean the time cost of extracting
feature TSP or SSP for whole dataset and for each frame.

Since the values of Td and Tf are related to the number
of STIPs, the more STIPs cost the longer time. On KTH
dataset, Td nearly equals 12s for extracting TSP and 60s for
calculating SSP. Since KTH contains more number of STIPs
for whole dataset, Td on KTH is bigger than ADL and UT,
which is shown in Fig. 14 (a1, b1). On UT dataset, Tf nearly
equals 0.3ms for extracting TSP and 1.8ms for calculating
SSP. As the complex background of UT brings more STIPs
for each frame, Tf on UT is larger than KTH and ADL, which
is illustrated in Fig. 14 (a2, b2).
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Figure 14: Comparing computation efficiency of TSP and SSP with different parameters.

The TSP and SSP can be generated efficiently, thus expands
the usage of proposed algorithm in many applications like re-
altime human action classification and video retrieval, activity
prediction and human robot interaction:
• The pipeline of performing real-time human action classi-

fication is as follows. Given a video containing an action,
STIPs are extracted quickly using Laptev’s detector in
[14]. Then BoVW, TSP and SSP features are calculated
in real-time using offline trained models. Finally, non-
linear SVM with homogeneous kernel generates the type
of action efficiently. Since the proposed algorithm are not
limited to human actions, it can be utilized to improve
the performance of content based video retrieval.

• Recently, many researches focus on the prediction of
ongoing activities [42], [43], [44], whose objective is
to predict potential actions and alarm person to prevent
dangers like “fighting” from happening. Treating an on-
going activity as small segments of videos, our algorithm
can be applied to intelligent systems to predict some
activities by transforming the task of prediction to classify
early video segments. For example, when an early action
named “one person stretch out his fist quickly towards
another person” is observed, it’s likely to be a later action
named “fighting” afterwards.

• A mobile robot designed by our lab with a camera and a
human-machine interface are shown in Fig. 15. We adopt
the PHILIPS SPC900NC/97 camera and place it on the
head of the robot with a height of 1.8 m. Additionally,
a curve mirror is utilized to change the camera into a
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360 degree panoramic camera. The mobile robot works
in a hall, semi-door environment, with a size of 8 m x 8
m. We defined three types of actions namely “Waving”,
“Clapping” and “Boxing”, which refer to three orders
“moving forward”, “circling” and “moving backward”.
As shown in the pipeline of Fig. 15, human actions
are captured as input for our real-time human action
recognition system after preprocessing. Action models are
trained based on the KTH dataset[14], and also as input
for the system. The output of the action type “Waving”
serves as a command “Moving forward” for the robot.
Especially in noisy environments, our proposed action
recognition method can clearly deliver orders in real-time
than using sounds or traditional BoVW method.

PHILIPS 
SPC900NC/97 

Camera

Human-Machine
Interface

Algorithm Display
Screen

              

Boxing                                                         Clapping Waving 

Real-time Human 

Action Recognition 

System

Preprocess
Action Models 

Trained on 

KTH dataset 

Send Command to Robot:

Moving forward

Figure 15: Applying human action recognition method to interact with robot named
“Pengpeng” in a noisy environment.

VI. CONCLUSIONS AND FUTURE WORK

In this work, a video of human action is referred to a cloud
of STIPs, which are modeled by a saliet directed graph. To de-
scribe the salient directed graph, a Time Salient Pairwise fea-
ture (TSP) and a Space Salient Pairwise feature (SSP) are pro-
posed. Different from BoVW and related works in capturing
structural information, TSP involves the words’ co-occurrence
statistic as well as their directional information. Since richer
information of spatial-temporal distribution is involved, TSP
outperforms baseline BoVW. Additionally, a Space Salient
Pairwise feature (SSP) is designed to describe geometric
distribution of STIPs which is ignored by TSP. The SSP
achieves compatible results with BoVW model on different
datasets which proves the effect of spatio-temporal distribution
for action classification without lying on content of STIPs.
Finally, a multi-cue representation called “TSP+SSP+BoVW”
is evaluated. This united form outperforms the state-of-the-
arts proving the inherent complementary nature of these three
methods. Experimental results on four challenging datasets
show that salient motions are robustness against distracted
motions and efficient to distinguish similar actions. Future
work focus on how to model geometric distribution of STIPs
more accurately. As only STIPs are involved in current work,
high level models and features like explicit models of human-
object [4] and dense tracklets in [45] can be considered.
Additionally, more real-time applications will be designed to
apply our algorithm.
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