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Surface Reconstruction with Sparse Point Clouds of Velodyner Sensor
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Abstract—Fast surface reconstruction from dense point
clouds data(PCD) is a popular topic in robotics. However,
it is still challenging to make large-scale surface maps with
sparse PCD. This paper proposes a method to build sur-
face maps using the PCD generated by velodyner HDL-
32E laser scanner, which is wildly used in automatic driv-
ing vehicles and wild exploring robots. Supervoxel cluster-
ing method is employed in this paper to organise the spare
point clouds, and scale variable triangular meshes are gen-
erated to represent the large-scale outdoor scenes. Exper-
imental results show that the proposed method is efficient
and robust even in uneven terrains contain complex obsta-
cles.
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I. Introduction

3D point clouds processing methods have achieved sig-
nificant process in many fields such as segmentation,
frame-to-frame registration and SLAM. However, there are
still changing problems in real-time implementation per-
formances, which are important to robots and automatic
driving vehicles. This paper proposes a fast surface re-
construction method using the sparse PCD generated by
Velodyner laser scanner. Velodyner HDL-32E, which
captures 70,000 points per second (10 frames with around
70,000 points per frame). Each frame provides 360◦ depth
measurements horizontally, and 40◦ vertically with 32 laser
beams. The pitch lasers range from +10◦ to −30◦. As the
slope angles are fixed, each laser produces a ring of points
on the ground, see Figure 1.

As discussed in [1], point clouds processing methods
lacks speed due to the increasing of input data and lacks ac-
curacy due to density decreasing. The real-time processing
of velodyner scanner’s data has the two bottlenecks: On
the one hand, to achieve enough space structure informa-
tion from the unknown environment, Velodyner HDL-32E
laser scanner rotates 32 laser beams to extract 360◦ view.
These discrete beams result quite sparse point clouds in far
away distance. High sparsity of points may miss specific
obstacles, hence restricts the application of greedy growing
surface reconstruction.

In another respect, although the laser scanner has reduced
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(a) Velodyner HDL-32E scanner (b) Point Clouds

Fig. 1. Velodyner HDL-32E and its output point clouds

the PCD density a lot, the output PCD files are still very
large. For instance, the Velodyner scanner used in this pa-
per outputs around 70,000 points in a nearly 2MB pcap for-
mat file per second. Dividing 3D space into small grids is
an efficient and commonly used way to reduce PCD size in
approximation methods. However, the sparse point clouds
make these space adjacency based methods powerless, be-
cause there are not enough points to guarantee the structure
information of each grid, or not enough neighbour grids to
represent the local space information.

This paper proposed a fast surface reconstruction method
to solve above problems. Aiming at real-time processing of
sparse 2.5D point clouds, supervoxel segmentation method
is employed to build larger grids with enough points data to
represent the local space structure. Additionally, input size
is reduced from dozens of thousand to several hundred by
using the supervoxels as input. Triangular meshes are gen-
erated by connecting the supervoxels and their neighbours,
then obstacles are estimated by a simple and fast sharp fea-
ture extraction method. Main contributions of this paper are
as follows:

(i) Supervoxels are novelly utilized to segment the sparse
PCD, different from the original supervoxel clustering
method of [2], to cope with the density shifting in sparse
PCD, a seeding method is proposed to generate the vari-
able scale supervoxels and build the corresponding adja-
cency graph with discrete voxel maps.

(ii) The Delaunay triangles are novelly generated by con-
necting the centers of constructed voronoi polygons, which
are generated by clustering the unit voxels with a defined
distance. This triangulation is fast and nearly real-time.

(ii) We proposes an efficient sharp feature extraction
method without using color information. This method can



be used to identify sharp edges in dense point clouds, and
estimate obstacles in sparse point clouds. It is flexible to
generate big meshes in planner surfaces and small meshes
in sharp edges and boundaries regions.

(iii) No priori information is used, so that the proposed
method can be applied in both man-made streets and wild
uneven terrain.

II. Related Works
A. Surface Reconstruction Methods

Fast Surface Reconstruction with depth sensors [3], [4]
has become to be one of the most efficient methods to un-
derstand unknown environments. They are to create a re-
spective and continuous triangular mesh surface using the
given noisy point clouds data, in which the normals and co-
ordinates of obstacles are also provided for collision detec-
tion. There are mainly two kinds of surface reconstruction
methods: point interpolation based methods and points ap-
proximating methods. The former group try to interpolate
points usually by projecting input point clouds to a space
distribution such as Delaunay triangulation [5], which has
beautiful triangles distribution. Famous methods like ball-
pivoting method [6],[3] incrementally construct triangles
with greedy growing and use local strategies to determine
insertion of points. Obviously, interpolation methods re-
quire dense point clouds. Although we can scan repeatedly
to get dense PCD, but it is hard to guarantee an acceptable
density.

In another respect, approximation based methods are
widely studied[2],[7]. These methods save a lot of time in
points sampling by dividing the point clouds into small reg-
ular grids, and such grids, usually called voxels, are used
to represent the real surface and extract the final triangle
meshes [7]. As removing a lot of points, normals should
be estimated before the division step. Widely used normals
estimation method like [8], outputs normal clouds approxi-
mated by K-near neighbours, so that the normal clouds are
smooth without sharp features. As sharp normals are im-
portant for recognizing boundary regions, [9] proposed a
randomized hough transform method to determine the prob-
ability distribution of boundary normals, then make normal
clouds sharper.

B. Supervoxels Methods
Recently, “Supervoxels” approaches are popular in PCD

processing. The concept of supervoxels is an extension of
“superpixel” segmentation [10], which is an over segmen-
tation technique to cluster pixels of same feature into big
“patches”. Such patches greatly reduce input complexity ,
and are usually used as input for afterward algorithms. [2]
extends the 2D pixels to 3D voxels, and makes it is possible
to process millions of input points in real time.

C. Other Works with Velodyner Scanner
Velodyner sensors are popular in the study of automatic

driving vehicles. [12] compares several famous 3D LIDAR

point clouds segmentation methods and proposes a prob-
abilistic ground modeling method by accumulating multi-
ple sensors. [14] designs a SLAM approach for velodyner

sensors and obtains precise trajectories. [1] presents a
small planes finding algorithm for frame-to-frame registra-
tion and works well in velodyner sparse datasets. Recent
works like [15] provides a vehicle target tracking method
for highway automatic driving application.

III. Supervoxels Segmentation
A. Space dividing

To reduce the size of input PCD, we divide the 3D space
into unit voxels with a small resolution named voxel res-
olution. To indicate the local space structure, the normal
of each voxel are computed with K-near neighbours of the
center point by using the estimation method of [8]. Note
that the other approximation method usually filter isolate
points at this step, but we won’t do that here, since that in
our sparse point clouds, a half points are “isolate”. What we
need to do is to filter in “supervoxel” scale. Then, we divide
the voxel center point clouds into bigger cube volumes with
a larger seed resolution, and we remove the volumes which
do not have enough unit voxels inside. Finally, the seeds
which are used to start clustering in the coming phase are
setted to the center coordinates of each volume. The normal
of each seed is computed by the mean of normals inside the
volume.

B. Distance measure
To segment point clouds into groups having similar

points, a defined distance measurement is important to sep-
arate points with different features. In [2], aiming at identi-
fying obstacle boundaries, their supervoxels clustering dis-
tance measurement contains spatial distance, color distance
and Fast Point Feature Histograms(FPFH) feature space
distance. While in our case, laser scanner cannot provide
color data and FPFH features are powerless in sparse point
clouds, since normals are more robust and efficient, in this
proposed method, distance measure is defined as:

D =

√
µD2

s

3R2
seed

+ θD2
n (1)

where the µ and θ are the influence factor of spatial distance
and normal value. Rseed is the original seed resolution,
which decides the scale of triangular meshes in the dense
parts of PCD. Normal distance Dn is computed as

Dn = 1− ~ns · ~nv (2)

where ns indicates the normal of the center point of each
cluster, and nv is the normalized sum normals of the query
voxel.

C. Clustering and segmentation
This paper uses K-mean for clustering, Firstly we com-

puted the seeds of each volume, and add K nearest vox-



Reliable distance of supervoxel adjacency

Fig. 2. the red lines are Velodyner point rings and the blue line is a valid
edge. As the separated property of the sensor, obstacle maybe missed
on the yellow mesh. To judge if these two green edges are reliable, we
compare their length with their neighbour supervoxels’ width multiple two

els into the cluster queue, compute distance between the
query voxel to the seeds though Eq 1, add the query voxel
into the nearest seed, and its neighbours (if exist) will be
added to the searching queue of its owner seed. This itera-
tion keeps on going until the twice failure expanding, i.e.,
no new voxel is added in. Note that K is a number decided
by the ratio of seed resolution and voxel resolution. To deal
with the sparse point clouds which don’t have space con-
tinuous neighbourhood, in each iterator, a incremental K is
used in K-nearest searching.

Each supervoxel expands at the same rate, and the center
of supervoxel is updated by the mean of all the members
after each expanding. Finally, the supervoxels grow to be
voronoi polygons. If the center points are regarded as sites
of voronoi map, they should be the nearest site for the mem-
ber voxels belonging to that supervoxel. Then, as the dual
graph of voroioi map, Delaunay triangular meshes can be
obtained by connecting the center points of adjacency su-
pervoxels. Note that, as mentioned above, the supvoxels
may not have continuous adjacency. Meshes between dis-
continuous supervoxels may result missing of obstacles. To
judge if the discontinuous neighbours are reliable to con-
nect, we define twice supervoxel’s average width as the re-
liable distance for triangulation. See Figure 2. Note that,
the scale of supervoxels is changeable. At dense regions,
the width of supervoxels will be around seed resolution, at
sparse parts of the point clouds, the supervoxels may grow
larger to cluster similar voxels. Therefore, the width of su-
pervoxels are computed by average distance of new owned
voxels, and updated after each expanding. Figure 3 indi-
cates the clustering result.

IV. Sharp Feature Extraction
A sharp feature estimation method for large scale out-

door scenes is proposed in [11] called Difference of Nor-
mals (DoN) method. In DON, the normal clouds are com-
puted with two different support radius, and the difference

Fig. 3. Segmented Supervoxels

Sharp feature extraction

Fig. 4. Red points and arrows stand for voxels and their normals, the green
cube is a clustered supervoxel within an obstacle. As the directions of
obstacle normal vectors are not same, the length of sum normal is shorter
than voxels number

between two results is used to indicate if the query point
is sharp or not. And to cope with smooth normal clouds,
the normals of whole point clouds have been computed
twice with the complex computing method introduced in
[9]. However, as it is shown in Figure 5 , the sharp nor-
mals estimation method of [9] can not work in sparse point
clouds, so that the DON is not obvious. Therefore, we pro-
pose a method to extract sharp feature for obstacle detecting
and tracking applications by considering about the length of
the sum of normals inside each segmented supervoxel:

Ln = |
∑

~ni|, ~ni ∈ S (3)

Look at the situation in figure 4, there are several vox-
els (instead by red points) in a supervoxel (the green frame)
occupied by an obstacle (the gray man). Obviously, the
length of sum normal vector should be shorter than unit
length multiple voxels number. We set a threshold t, and
if Ln is smaller than t∗N (N is the number of points inside
the voxel), this supervoxel will be labelled as sharp.

The magnitude of t depends on the computed normal
clouds of the input PCD. There are many different normals
estimation methods exist. We chose one of the simplest



Fig. 5. normal clouds

Fig. 6. Sharp supervoxels in red

from [8], in which the normals are computed by analysis
of the eigenvectors and eigenvalues of a covariance matrix
created from their k-near neighbours. The neighbour size k
determines the quality of the normal clouds. Theoretically,
the bigger the k is, the bigger the t is, because the edge
points influence much on neighbour points and make their
normals sloped. Obviously, k should be big enough to indi-
cate the local structure, but it results in too big supporting
platforms in sparse regions. On the other hand, the number
of voxels owned by supervoxels also has a big influence on
t. Less voxels cannot provide reliable sharp feature, that’s
why we remove the supervoxels which don’t have enough
voxels. Figure 6 shows the extracted sharp point clouds
coloured in red.

V. Implementation and results
The proposed method is applied on a novel complex

dataset containing three short and one long loop pcag files
captured in campus scenes.There are totally 2480 frames
with around 65000 to 70000 points extracted on each frame.
This dataset contains both man made roads and uneven ter-
rains. Obstacles include trees, people, vehicles, buildings
and streetlights, as shown in Figure 7, and the correspond-
ing satellite view on the left. The machine used for our
experiments is an eight-core Intel(R) Xeon(R) @ 2.66 GHz
with 16 GB system memory.

See Figure 7, the dataset is captured in large campus
scenes, where the scale is about 100m × 100m(estimate
from google map). Using Delaunay triangular strategy, the
generated triangles are well distributed at dense point re-

(a) Satellite view from Google Map (b) Point clouds datasets

Fig. 7. Campus scene datasets captured by Velodyner HDL-32E

Fig. 8. face/vertex and face/edge

gion near to the senser. As mentioned above, we limit the
triangles’ edge length in 1 ∼ 2 m, to ensure that there is no
meshes at unreliable far away regions. Using scale change-
able supervoxels and extracted sharp features, even remote
obstacles in sparse point clouds can be recognised and re-
constructed, such as the far away buildings, cars and peo-
ple in (a), (c) and (d) in Figure 9. While the drawback is
that this method generates disordered surfaces on irregular
normal regions, for instance, the trees of (b). Without pri-
ority, the proposed method works well in complex terrain
like construction sites in (c) and the ramp in (d).

In term of the time efficiency, Table I shows the time cost
of each step. All results are the average value of 10 succes-
sive frames in each scene, and 50 times running on each
frame. Frame streams are chosen randomly. And the ex-
periment parameters voxel resolution and seed resolution
are respectively 0.2 m and 1.0 m. In preparation stage,
the mainly cost is normal estimation. The expanding phase
costs a lot, and there is some room to improve. Specifically,
expanding of seeds compute all the k nearest neighbours,
in which the distance between inner voxels and centers are
computed for many times. As the discreteness of sparse
point clouds, we cannot obtain outer layer neighbour vox-
els directly by adjacency graph. Finally, the sharp feature
extraction is fast. From these results we can find that the
proposed method is robust to cope with different and diffi-
cult terrains with a nearly real-time computation speed.

Assert that 2.5D surfaces can be projected to 2D plane.
Base on the Euler Characteristic, for a continuous Delau-



TABLE I. Experiment results: input size, segmented supervoxels, output sharp supervoxels and time costs

Scene Points voxles supervoxels sharp SV time(s)
prepare expand sharp extract total

1 64480 22876 6235 1276 0.2762 0.0404 0.6526 0.9692
2 66752 23692 7930 3302 0.2748 0.0530 0.7275 1.0554
3 67008 23337 7513 1502 0.2710 0.0494 0.7323 1.0528
4 65600 25013 7955 1723 0.2928 0.0522 0.7557 1.1101

(a) scene 1 (b) scene 2

(c) scene 3 (d) scene 4

Fig. 9. Campus datasets captured by Velodyner HDL-32E

nay triangulation, the ratio of faces and vertexes should
be near to 2. Obviously, the generated surfaces in Figure
7 contain holes and disconnections due to the high spar-
sity of the dataset, but the ratio values are still meaningful
to evaluate the reconstructed surfaces. See Figure 8, the
blue line shows that this value is stable in different com-
plex scenes, which indicates the approach works well even
with different amount of complex obstacles around. While
it is possible to improve this ratio and generate lager sur-
face meshes in each frame by setting a larger resolution,
but as mentioned in section 3, unreliable connections may
miss small obstacles on the ground. The orange line for
face/edge shows the useful connections. As the special ro-
tation property, Velodyner datasets generate many big ring
shape point clouds, which results in many unnecessary con-
nections. Take measures to improve this ratio can improve
algorithm efficiency.

VI. Conclusions
In this paper, an efficient surface reconstruction method

for Velodyner scanner is introduced. Supervoxels are used
to make voronoi polygons and generate Delaunay triangular
meshes. Local planes are estimated by comparing vertexes’
normals, so that the proposed method can be used in both

man made highway and wild uneven terrain. The sharp fea-
tures are extracted in segmented clusters and used to detect
obstacles without any prior knowledge. Experimental re-
sults show that the final surface generated from sharp fea-
ture is reliable and nearly real-time efficient. Future work is
to deal with local meshes overlapping and explore suitable
frame-to-frame registration method for real-time wild ex-
ploring robots and automatic driving vehicles applications.
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