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ABSTRACT

Bag-of-Words (BoW) histogram of local space-time features is very popular for action representation due
to its high compactness and robustness. However, its discriminant ability is limited since it only depends
on the occurrence statistics of local features. Alternative models such as Vector of Locally Aggregated
Descriptors (VLAD) and Fisher Vectors (FV) include more information by aggregating high-dimensional
residual vectors, but they suffer from the problem of high dimensionality for final representation. To
solve this problem, we novelly propose to compress residual vectors into low-dimensional residual
histograms by the simple but efficient BoW quantization. To compensate the information loss of this
quantization, we iteratively collect higher-order residual vectors to produce high-order residual histo-
grams. Concatenating these histograms yields a hierarchical BoW (HBoW) model which is not only
compact but also informative. In experiments, the performances of HBoW are evaluated on four
benchmark datasets: HMDB51, Olympic Sports, UCF Youtube and Hollywood2. Experiment results show
that HBoW yields much more compact action representation than VLAD and FV, without sacrificing

recognition accuracy. Comparisons with state-of-the-art works confirm its superiority further.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Human action recognition has shown its significance in a large
amount of applications from video surveillance to human-machine
interaction [1]. Effective action representation is crucial for high
recognition accuracy. Recently, successful representation models are
mostly based on local space-time features such as 3D SIFT [2], HOG-
HOF [3], 3D Gradients [4], and improved Dense Trajectory (iDT) [5],
see |6,7] for more evaluation studies. Once local features are extracted
from action videos, typically they are quantized by clustering algo-
rithms to generate a visual codebook, then each of them is assigned to
the nearest codeword. The statistic of word assignments yields the
Bag-of-Words (BoW) histogram [8,9] which is very compact and
robust for human action representation [6,10-13].

To improve BoW, researchers have recently developed many
successful alternative models, such as Locality-constrained Linear
Coding (LLC) [14], Fisher Vectors (FV) [15,16], Super Vector (SV)
encoding [17], kernel codebook encoding [19], and Vector of Lin-
early Aggregated Descriptors (VLAD) [20,23]. Among them, VLAD
and FV show outstanding performances for human action recog-
nition [5,24,25,27-29]. Compared with BoW in Fig. 1, VLAD records
the 1st-order difference between local features and codewords,
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i.e., the residual vectors generated by hard assignment. FV includes
not only the 1st-order mean residual vectors but also the 2nd-
order covariance residual vectors, which are generated by more
complicated soft assignment.! Both of them support the potential
of using residual information to get more efficient models.
Generally, model efficiency includes the time and storage costs
of computing representations, learning classifiers on these repre-
sentations and recognizing new videos. VLAD and FV are superior
to BoW for computing representations. Taking VLAD [20] as an
example, it includes high-dimensional information in each code-
word, therefore when to reach a given level of performance, a
small number of codewords are sufficient for VLAD. The cost of
computing VLAD representation is thus greatly lower than that of
BoW histogram. However, for D-dim local features and K code-
words, BoW histogram is only K-dim, while VLAD representation is
KD-dim because it aggregates D-dim residual vectors in an
element-wise manner. Meanwhile, local space-time features are
high-dimensional, e.g., D=396 for iDT [5], so dimyp>dimgy.
High-dimensional VLAD representation results in high costs on
time and storage for both training classifiers and recognizing new
videos, especially on large-scale datasets like HMDB51 [39]. This

1 Hard assignment quantizes the feature into the only codeword, while soft
assignment enables the feature to be represented by multiple codewords [10].
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Fig. 1. The basic idea of hierarchical BoW. It is inspired by the quantization idea of BoW and the residual encoding idea of VLAD and FV. The final HBoW histogram is the
concatenation of BoW histogram and multiple orders of residual histograms. K is the size of codebook and D is the dimension of local features. Hard assignment means using
K-means, while soft assignment means using Gaussian Mixture Models (GMM) for probabilistic assigning weights. Note that HBoW with hierarchy=1 is same to Bow.
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Fig. 2. The flow chart of our action recognition in videos. The 1st-order residual histogram is generated and linked to BoW histogram to form the 2-hierarchy HBoW
histogram. Normalized HBoW histogram serves as the final action representation, and linear SVM classifiers are used for recognition. Note that all visual codebooks in (2) are

pre-learned offline, and the normalization step in (3) is elaborated in Section 2.4.

problem is much worse for FV representation which has the
dimension of 2KD [16,25,30].

In this paper, we show that this problem can be effectively solved
by the means of BoW, for which we develop a new model called
hierarchical BoW (HBoW). Its motivations are illustrated in Fig. 1.
Specifically, it aims at (1) compressing residual vectors into compact
residual histograms by simple but efficient BoW quantization, and
(2) utilizing multiple orders of residual histograms to compensate for
the quantization loss and make the final representation, called HBoW
histogram, strongly informative for action recognition.

The flow chart of our action recognition method is illustrated in
Fig. 2. It contains three main steps: (1) low-level feature extrac-
tion, (2) mid-level action representation, (3) normalization and
classification. Our proposal of HBoW works in the second step, and
an example process of generating the 1st-order residual histogram
is given in the red frame of Fig. 2. The innovation lies in that the
residual vectors between original local features and codewords are
regarded as new features to execute word assignment again. The
resulted 1st-order residual histogram is concatenated to BoW
histogram to form the 2-hierarchy HBoW histogram. If we iterate
this process for L times, then we get (L+ 1)-hierarchy HBoW his-
togram, see more details in Sections 2.2 and 2.3. If all codebooks
are assumed to have K codewords, each iteration produces a K-dim
residual histogram. The dimension of (L+1)—hierarchy HBoW

histogram is therefore K(L+ 1), which is significantly smaller than
KD since L+1<D. Then, using low-dimensional HBoW histogram
for action representation saves a lot of time and storage for
training classifiers and recognizing new videos.

In summary, HBoW is inherently derived from iterative BoW
quantization with high-order residual vectors. It has two advan-
tages that (1) It shares high compactness and efficiency of the
original BoW; (2) It yields strongly discriminative representation
by using high-order statistic information.

11. Related works

As we discussed, BoW model with local features has become very
popular for visual understanding researches, such as image classifi-
cation and object/action recognition. Alternative encoding models
[14,17,18,20-22] based on BoW framework obtain the state-of-the-art
performances in many visual tasks.

Wang et al. [31] and Peng et al. [10] evaluated most of these
models for human action recognition, and observed that FV encoding
outperforms others. FV combines the benefits of generative and dis-
criminative approaches, and usually leverages Gaussian Mixture
Model (GMM) as its dictionary. Wang et al. [5] adopted FV encoding
with iDT features, and obtained generally good results on frequently-
used action datasets, e.g., Olympic Sports [42], UCF Youtube [33] and
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Hollywood2 [34]. Very recently, Peng et al. [29] proposed the double-
layer FV to construct highly discriminative action representations.
They introduced the max-margin dimensionality reduction method
to compress the FV obtained from the first layer, and represented the
whole video by the second-layer FV. In experiments, they achieved
state-of-the-art accuracies on large-scale action datasets, e.g.,
HMDB51 containing 51 human actions [39].

Compared with FV, VLAD [20] shows a bit weaker performance
but better time efficiency for its excellent combination with the
simple but efficient K-means algorithm, see more evaluations in
[24]. To enhance the original VLAD for action representation, Peng
et al. [24] augmented it to be a high-order version of VLAD (H-VLAD)
by using high-order statistic information, inspired by FV. In their
experiments, H-VLAD was proved to yield better performance than
FV on both large-scale image and action datasets. Our idea of
encoding high-order residual information into HBoW model is in
turn inspired by H-VLAD. The difference lies in that H-VLAD uses the
1st-order residual vectors to compute three-order super vectors, but
HBoW generates high-order residual vectors to construct high-order
residual histograms in an iterative manner. Moreover, the “order” in
HBoW model could be higher than three to exploit extra com-
plementary information while remaining high computational speed.

The rest of paper is organized as follows. Section 2 introduces
the generation and normalization of HBoW histogram in detail.
The complexity comparisons between HBoW and baseline BoW,
VLAD and FV are presented in Section 3. Section 4 demonstrates
the performances of HBoW model for action recognition on four
challenging benchmark datasets [33,34,39,42], in comparison with
state-of-the-art works. Conclusions are given in Section 5.

2. Proposed algorithm

In this section, the process of generating 1st-order residual his-
togram is firstly given on the basis of original BoW and VLAD which
share the same idea of hard assignment and are both time efficient.
Then, we extend this process to high-order situations and use the
resulted residual histograms to form HBoW histogram. Finally, HBoW
histogram is normalized in a special way for its section characteristic.

2.1. Brief reviews of BoW and VLAD

In the standard framework of BoW, a visual codebook C=|[c,
wees €k ..., €k] € RP*K, which corresponds to the visual codebook 1 in
Fig. 2, is pre-learned by K-means from random training samples. Let
X=[X1,....X;,....Xn] € RP*N denotes the feature set of size N
extracted from an action video. Each feature is assigned to the
nearest codeword and gets its word label. Features assigned with the
same label share the similar feature appearance. The action video is
then represented by BoW histogram histy(X), where the k-th his-
togram bin is computed as follows:

hist, (X) = |{x;|LB(X;) = k} | M

where LB(X;) = k denotes that k is the word label of X;, and |.| counts
the number. The dimension of BoW histogram equals to codebook
size K.

VLAD is proposed by Jégou et al. [20]. Its codebook generation
and hard assignment processes are same to those of Bow. The
difference lies in that for each codeword ¢;, a vector v is derived
from the element-wise aggregating of the residual vectors
between ¢, and all local features assigned to ¢, as follows:

V= Y (Xi—¢) 2)

X;:LB(X;) = k

Then, the combination of all D-dim vectors v, with k=1,...,K
yields the VLAD representation, thus it has the dimension of KD.

2.2. The 1st-order residual histogram

In Eq. (2), the residual vectors X; —c; are directly mapped to a
D-dim vector by element-wise aggregating, which means the
computation is between the element pair (X;;, ¢;;) with j=1,...,D.
This aggregating involves the parameter D, thus causes the pro-
blem of high dimensionality in the final encoding result. To solve
this problem, we propose to compress residual vectors before
encoding. The compressing method is inspired by BoW quantiza-
tion, and specific steps are as follows. Firstly, we denote the bundle
of residual vectors as a new feature set V(:

v = {v<”|v;<‘,.> —xj—¢i=1,...,N,LB(X;) = k} 3)

ki

where each vector v;;’ represents the cluster-centered difference
characteristic of x;, and the superscript denotes “1st-order”. Following
the BoW quantization framework, we execute K-means clustering on
V™ and get the second codebook €V =[c{", cff]) s €D e RO,
which corresponds to the visual codebook 2 in Fig. 2. After word
assignment from V' to ', each residual vector v{}’ and its corre-
sponding local feature x; get the 1st-order residual label k;. Features
assigned to the same k; share similar cluster-centered difference
characteristics. The global summarization of such characteristics then
can be encoded in the 1st-order residual histogram histy, (V“)),
where k;-th histogram bin is computed as

hist;, (v“>) = HVL}HLB(VE?) = kl}’ ()

where k; e[1,...,Kq], ie[1,...,N], ke[1,...,K], and |.| counts the
number.

Linking the 1st-order residual histogram histy, (VD) to original
histy(X) yields the 2-hierarchy HBoW histogram:

Hist® — [histK(X); histy, (VC ’)] (5)

which encodes the original distribution of local features as well as
their cluster-centered difference characteristics. Its superscript
here denotes “2-hierarchy”.

Intuitive examples of histx(X) and histy, (VD) are respectively
presented in Fig. 3(a) and Fig. 3(b), (c). Note that histograms in (b and c)
are in the relation of equivalence since residual vectors correspond with
local features. In (b), colorful arrows represent the residual vectors from
the cluster center to local features assigned to this cluster. They are
actually center offset vectors, which represent the cluster-centered
orientations in 2D situation. In other words, the clustering of residual
vectors in (b) equals to the segmentation of angular coordinates in (c),
visually illustrated as pie segmentations. Therefore, the statistic of fea-
tures within different-color pies yields the same histogram.

2.3. High-order residual histograms

Similar to Eq. (3), the 2nd-order residual vectors V® can be com-
puted between vector pair (v, cfj])) in (V®, ¢V). After clustering V' to
C? with K, codewords, the 2nd-order residual histogram histy, (V)
can be similarly computed by Eq. (4). Accordingly, it is easy to get high-
order residual histograms hist,, (V®), ..., histy, (V") by iterating above
process. Concatenating them to the original BoW histogram yields the
(L+1)—hierarchy HBoW histogram:

Hist© D — [histk(x); ....; histy, (VO); ] (6)

where le[1,...,L]. For briefness, we denote Histt D = [histy;
...; hist;; ...]. This histogram is the concatenation of one K-dim BoW
histogram and all Ki-dim residual histograms, therefore its dimension is
K+ Y0 1K

According to above description, the characteristic of HBoW can be
summarized in three aspects: (1) its basis is the BowW quantization,
hence it shares the high robustness and fast calculation velocity of
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Fig. 3. Example illustrations of BoW histogram in (a), and the 1st-order residual histogram in (b) or (c). Shurikens and triangles in (a and c) represent local features, black
points are cluster centers, and colorful arrows denote residual vectors. Histograms in (b and c) are equivalent since residual vectors correspond with local features.
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Fig. 4. The effect of different normalizing schemes for a 200-dim HBoW histogram. Traditional L2 normalization is from (a) to (c), where red circles indicate some obvious
burst bins. Intra normalization is performed from (a) to (b), then from (b) to (d). The energy spectrum of histogram in (d) appears much more uniform. The coefficient of
variation (COV) is used to measure the burstiness. Higher COV value means higher burstiness in the histogram. (For interpretation of the references to color in this figure

caption, the reader is referred to the web version of this paper.)

original BoW; (2) its representation is statistic histogram, thus has the
advantages of histogram homogenization and scale-invariance when
describing diverse samples; (3) its hierarchy is not fixed and the histo-
gram in each hierarchy contains supplementary information.

2.4. HBoW histogram normalization

According to the standard normalizations of VIAD and FV
[23,16,35,29], the representative can be enhanced by applying Signed
Square Root (SSR) function (power normalization with exponent=0.5)
before 2 normalization, named SSR-L2, to suppress the effect of bur-
stiness (an effect that some histogram bins become too large compared
with others, i.e., red circled bins in Fig. 4(a and c)). Since HBoW histo-
gram is the concatenation of sub histograms, this paper adopts SSR-L2
normalization to normalize sub histograms respectively, then performs
joint L2 normalization for entire histogram. This scheme is inspired by
intra normalization [23] in which VLAD vector is normalized in a sec-
tional manner. In this paper, we name it intra normalization, too. Spe-
cifically, the first step is to perform sub SSR-L2 normalization as

sng(histy) - histg‘s. _sng(hist;) - hist?‘s.
IThistyl, =~ Ihist; 11

Hist- ™! = 7

where [=1, ..., L, and sgn denotes sign function. The second step is joint

[2 normalization formulated as
e g (L+1

L1 _ Hlst§n+ )

Hist

=0 €))
o IHist- D1,

where the subscripts sn and jn respectively indicate sub and joint
normalization.

An example of our intra normalization is illustrated in Fig. 4. The
process of Hist"* " — Hist{, " then Hist{, " — Hist, *  is performed
with SSR-L2 normalization from (a) to (b), then joint L2 normalization
from (b) to (d). The histogram obtained by traditional L2 normalization
(ie., only one step of joint L[2) is presented in (c) for comparison.
Obvious burst bins are labeled by red circles, and it is clear that tra-
ditional L2 normalization can not compress these bins. In contrast, intra
normalized histogram in (d) shows absolutely no peaks in the energy
spectrum, and bins appear more uniform. In order to compare the
normalization results numerically, we use the coefficient of variation
(COV), ie., the ratio of energy spectrum standard deviation ¢ and
energy spectrum mean |, to represent the degree of histogram bur-
stiness. Higher COV value means higher burstiness. COV values in (a
and b) show that performing SSR-L2 normalization on sub histograms
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compress COV from 0.65491 to 0.48635. Even though (a), (c) and (b),
(d) show that L2 normalization have no effect on compressing COV, it is
still necessary for global scale normalization.

2.5. HBoW algorithm

In Algorithm 1, we present all the computation steps of HBoW
containing histogram generation and normalization. Local space-time
features act as input. Original BoW histogram and the proposed residual
histograms are successively generated by iterating Step 2-10. The selec-
tion of new codebook size K’ in Step 12 will be discussed in Section 4.1.
The normalized form of HBoW histogram obtained in Step 16 serves as
the final action representation. It should be noted that in practice, the
codebooks in Step 2 are usually pre-learned offline and online manip-
ulation is only invoking corresponding codebook from storage.

3. Complexity comparison

This section compares the (L+ 1)—hierarchy HBoW with baseline
models, namely Bow, VLAD, and FV, in terms of the total number of

codewords (tnc), the complexity for assigning N local features to
codewords (ac), and the dimensionality of action representation (dim),
as shown in Table 1. Note that the codebook size of FV means the
number of Gaussians and its soft assignment is assumed to be global
assignment, i.e., each local feature is assigned with all the codewords.
For HBoW, we simply assume that K; = K to give an intuitive number
for comparison.

In the first row of Table 1, we observe that HBoW takes the
burden of learning K(L+ 1) codewords. However, it should not be
worried about since codebooks are usually pre-learned offline in
real applications. In contrast, the assignment complexity in the
second row makes influence on final time efficiency, since new
input features have to find their nearest codewords online. The
third row shows that the dimension of HBoW histogram is rather
lower than the representations of VLAD and FV, due to the fact
that L+1<D <2D. In the next section, these models will be
compared further with regard to the accuracy and computational
cost in action recognition experiments.

Algorithm 1. Computing HBoW histogram for the action video.

Input: Local space-time features X = [x1, ..., Xy, ...,

xN] ER extracted 1n

the video, initial codebook size K, and hierarchy parameter L.
Output: (L + 1)-hierarchy HBoW histogram Hist.

forl=1to L+1do

=

2 Compute the visual codebook C = [c1, ..., Ck, ..., Cx] using K-means on the

videos.
3 for i=1to N do

random subset of X. % This step is usually finished offline with training

4 For x;, find its nearest codeword cj in C with

k< argmin ||x; —cj|l,j =1,..., K
J

5 Assign x; with
LB(x;) + k.
6 Update the k-th bin of histogram histx (X) with
histy(X) < histy(X) + 1.
7 Compute residual vector

Store vi; in V.
end
10 Normalize histx (X) with

Vi < X; — Ck.

hist x (X) «

sgnlhist (X)) - [hist x (X)]*

|[hist & (X)[|2

11 Concatenate histx (X) to Hist, then set histx (X) to null.

12 Select the new K.
13 Substitute K’ for K.
14 Substitute V for X.
15 end

16 Normalize Hist with

Hist

Hist + ———

17 return Hist.

||Hist||2
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Table 1

Complexity and dimensionality comparisons among BoW, VLAD, FV, and HBoW.
Parameter Bow VLAD Fv HBoW
tnc K K K K(IL+1)
ac O(N) O(N) O(NK) O(NL)
dim K DK 2DK K(L+1)

-~
ﬁv

cartwheel

kiss get out car

sword exercise

shake hands

answer phone

Fig. 5. Sample frames from action datasets used in our experiments. From top to bottom: HMDB51, Olympic Sports, UCF Youtube, and Hollywood2.

4. Experimental validation

In this section, the experiments of action recognition are carried
out on four benchmark datasets: HMDB51 containing 6766 videos
of 51 human actions collected from various sources [39], Olympic
Sports containing 783 videos of 16 sport actions [42], UCF Youtube
containing 1168 videos of 11 human actions from Youtube [33], and
Hollywood?2 containing 1707 videos depicting 12 actions collected
from 69 different Hollywood movies [34]. Sample frames of these
datasets are given in Fig. 5.

On HMDBS51, we follow the standard evaluation protocol in [39],
and report the average classification accuracy over three test-train
splits that per category contains 70 examples for training, and 30 for
testing. On Olympic Sports, we use the provided train/test split in [42]
as 17 to 56 training samples and 4 to 11 test samples per class. The
recognition performance is measured in terms of mean average pre-
cision (mAP) over all action classes. The mAP measurement is also

used for Hollywood2 dataset, where the standard training-testing
splits are 823 videos for training and 884 videos for performance
testing [34]. Training and testing video clips come from different
movies. On UCF Youtube, we use Leave-One-Out Cross-Validation for
the pre-defined setting of 25 groups in [33]. Average accuracy over all
classes is reported as the performance measure.

All experiments are carried out on an Intel Core i5-3470 CPU
with 3.20 GHz. Our software relies on Microsoft Visual Studio 2012
and Matlab 2012a. Baseline BowW (L2 normalized), VLAD (intra
normalized [23]) and FV (SSR-L2 normalized [16]) and their dic-
tionary learning algorithms, namely K-means and GMM, are
implemented with VLFeat Toolbox [38]. The widely used 162-dim
HOG-HOF [43] and 396-dim iDT (the combination of HOG, HOF,
and MBH) [5] are adopted as two kinds of local space-time fea-
tures, namely sparse features and dense features. To learn visual
codebooks, each iteration we randomly extract a 1/3 subset of local
features (or residual vectors) as training samples. In recognition
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Fig. 6. Recognition accuracies on HMDB51 with respect to the initial codebook size K and hierarchy parameter L.

steps, we train linear SVM classifiers for all models except BowW.?
All reported results are the average accuracy of 10 runs for existing
randomness, e.g., in the initialization of K-means.

4.1. Parameter tests

The setting of codebook size K is important for clustering. Since
HBoW has multiple clustering steps, the problem of selecting K, K;
becomes much pressing. Related works determine K by testing
discrete candidates [35,5]. We follow the recognition setup of [35],
and set initial K (i.e., Ko) ranging in [50, 100, 500, 1000]. Assuming
K; is determined, we use a rough scale factor p = {% 1,2} to control
K, 1, allowing K, 1 = pK,. The hierarchy parameter L is set from
0 to 6, where HBoW with L=0 is same to original Bow.

The average recognition accuracies on HMDB51 with HOG-HOF
features are given in Fig. 6. It is easy to observe that larger initial K
always brings better results, which suits well to the performance
characteristic of BoW based models. With regard to hierarchy L,
most curves are stably increasing with L, indicating that the resi-
dual histogram in each hierarchy contains supplementary infor-
mation for action representation. However, when L > 3, some of
them appear slight increasing even decreasing tendencies. A pos-
sible reason is that codebook learning error accumulates too much
during more and more iterative clusterings on random training
features. If the training feature set is assumed to be large enough,
the obtained codebook could be more stable to depict the feature
space, and the decreasing tendencies could be weakened.

In particular, the curve decreasing appears much obvious at
p =2, because the over-segmentation of residual vector space are
severe when codebook size K; grows exponentially. Across (a-c),
we notice that the curves of K =50 keep growing from p =0.5 to
2. It is due to the fact that the distribution of local features can not
be fully modeled when initial K is too small, and using larger K; in
subsequent clusterings can dig out more discriminative informa-
tion from the residual vector space. Finally, the highest accuracy
51.76% is achieved at K=1000,p =1,L=6. In following experi-
ments, K=1000,p=1,L =6 are used by default.

4.2. Normalization tests

In Fig. 7, we show the average recognition accuracies or mAPs
using different normalization schemes for HBoW histogram. Respec-
tively, global L2 is the traditional L2 normalization on the entire

2 Since BoW model can achieve far superior performance by using RBF-y?
kernel function [6,26], the results of BoW with nonlinear SVM (named BoW-non)
are presented in Fig. 8 for comparison.
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Fig. 7. The recognition results on four datasets using HBoW with different nor-
malization schemes.

histogram, global SSR-L2 is performing SSR-L2 directly on the entire
histogram, sub SSR-L2 is only the first step of our intra normalization
without any global normalizer, and sub SSR-L2 + joint L2 is exactly
the proposed intra normalization in Egs. (7) and (8).

From Fig. 7, we can come to following conclusions. (1) Our
proposal of intra normalization greatly improves the model effi-
ciency, in comparison with traditional L2 or the standard SSR-L2
which has been successfully used for the normalization of VLAD
and FV. This is due to HBoW histogram has the special structure
that each entire histogram is composed by sub histograms derived
from discriminative residual spaces. Sectional normalization helps
to compress the scale-varying burstiness in different sub histo-
grams (from different residual spaces). (2) Our intra normalization
brings more improvements for sparse HOG-HOF than dense iDT on
most datasets. The possible reason is that the histogram of sparse
local features tends to be sparser, which indirectly increases the
influence of burstiness. Our intra normalization can compress such
burstiness effectively, thereby making normalized histogram much
better for action representation.

4.3. Comparison with baselines

This section compares HBoW with BoW, VLAD and FV firstly
using 162-dim HOG-HOF features on HMDB51 dataset. Fig. 8
shows the recognition accuracy in (a and b) and average recog-
nition time in (c and d) respectively as the function of both
codebook size K and representation dimension dim.

In Fig. 8(a), it is obvious that given a fixed-size codebook, other
models significantly outperform BoW (with linear and nonlinear
SVMs). This is not surprising for VLAD and FV, since they include
extremely higher dimensional information than BoW histogram,
e.g., when K=500, dimg,w=500, but dimy;4p=81,000 and
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Table 2
Initial codebook size K for other three datasets, referred to the conclusions of [10].

Model BowW VLAD FV HBoW

codebook size K 8000 256 256 1000

dimg,=162,000. Under the same situation, our HBoW histogram is
only 3500-dim, but its performance is very comparable to VLAD
and FV. More importantly, as shown in Fig. 8(c), the average
recognition speed of HBoW is rather fast, e.g., about 30 times
faster than FV at K=4000. In Fig. 8(b), the accuracy superiority of
HBoW becomes much more obvious, when representation
dimensions are assumed to be same. This validates the strong
information digging ability of HBoW, i.e., using limited dimensions
to encode more distinctiveness of human action patterns.

For other three datasets, we collect recognition data using
different codebook sizes for different encoding models, shown in
Table 2. All codebook sizes are referred to the conclusions of an
action recognition survey article [10] that for a good balance
between performance and efficiency, sizes of 256 and 8000 are good
choices for super vector based encoding and other encoding respec-
tively. The experiment results based on these settings are given in
Table 3 For comparisons with fair parameters, the results with
same cluster num K=1000 are additionally presented in the right
half table. Due to the poor performance of BoW with linear SVMs,
we just present the results of BoW with nonlinear SVMs but others
with linear SVMs. In Table 3, we observe that BoW with nonlinear
SVMs results satisfying performances but suffers from extremely

high computational costs. Compared with FV and VLAD, HBoW
slightly outperforms in terms of recognition rates. However, the
advantages of HBoW mostly manifest in low dimensionality as
well as its contribution to fast computational speed, see dim and
time rows of Table 3.

Table 3 shows that iDT outperforms HOG-HOF on all datasets.
This is due to the fact that iDT combining HOG, HOF, and MBH,
benefit from the complementary information encoded in each of
them. Moreover, iDT is the improved version of Dense Trajectory
(DT) [46]. It benefits from the additional human body detection
and preserves foreground body features for effective representa-
tion [5]. We also notice that the difference between FV and (VLAD,
HBoW) for iDT seems smaller than that for HOG-HOF, which is
similar to the conclusion in [10]. The possible reason is that denser
features can train more stable codebooks for hard assignment
models, namely VLAD and HBoW, and can indirectly decrease the
influence of soft assignment on FV. Besides, the information con-
tained in the 2nd-order covariance statistics may be less com-
plementary to the 1st-order mean statistics for iDT. Finally, for
super vector based models FV and VLAD, using bigger codebook
size K=1000 does not always brings better performances than
K=256, which is however totally positive for BoW model, see the
results of K=8000, 1000 for BoW.

4.4. Comparison with state-of-the-arts

Since best performances are always obtained when encoding extra
geometric information [5,35], this paper adopts the widely used
spatial-temporal pyramids (STP) model [37]. Videos are divided into
two temporal parts, and three spatial horizontal parts, based on the
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Table 3
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Performance comparisons on Olympic Sports, UCF Youtube and Hollywood2. The “rate” denotes mAP for Olympic Sports and Hollywood2, and average accuracy for UCF

Youtube. “BoW-non” indicates BoW + nonlinear SVMs (RBF-y? kernel).

Olympic-S with K in Table 2 with K=1000
BoW-non VLAD Fv HBoW BoW-non VLAD FV
HOG-HOF rate (%) 64.12 69.90 72.53 7445 61.33 67.47 72.93
dim 8000 41,472 82,944 7000 1000 162,000 324,000
time (s) 128.30 0.72 2.31 0.09 57.83 245 9.70
iDT rate (%) 81.64 84.33 85.46 85.80 77.60 84.72 85.00
dim 8000 101,376 202,752 7000 1000 386,000 792,000
time (s) 130.14 1.77 2.56 0.73 67.59 7.32 10.05
U-Youtube with K in Table 2 with K=1000
BoW-non VLAD 1% HBoW BoW-non VLAD FV
HOG-HOF rate (%) 64.76 69.40 72.52 72.09 55.03 68.56 72.06
dim 8000 41,472 82,944 7000 1000 162,000 324,000
time (s) 100.39 121 4.57 0.21 46.77 6.32 18.30
iDT rate (%) 76.99 83.44 84.07 85.14 74.10 83.71 84.66
dim 8000 101,376 202,752 7000 1000 386,000 792,000
time (s) 124.05 1.89 2.85 0.17 53.25 6.78 13.14
Hollywood2 with K in Table 2 with K=1000
BoW-non VLAD Fv HBoW BoW-non VLAD FV
HOG-HOF rate (%) 37.22 36.29 39.50 4113 34.46 39.45 41.53
dim 8000 41,472 82,944 7000 1000 162,000 324,000
time (s) 69.05 1.03 247 0.43 4755 5.30 8.09
iDT rate (%) 49.50 53.95 55.80 56.30 46.02 55.93 56.11
dim 8000 101,376 202,752 7000 1000 386,000 792,000
time (s) 152.00 2.51 3.96 091 74.36 7.36 12.18
a b c

Fig. 9. An sample video is visualized as 3D cubes, referred to the STP modes in [5]. Grids in (a-c) represent the spatial-temporal pyramid modes used in our experiments.

STP used in [35]. Totally, six HBoW histograms: one for the whole
video (Fig. 9(a)), two for temporal parts (Fig. 9(b)), and three for spatial
parts (Fig. 9(c)) are concatenated to represent the video.

In the upper half of Table 4, HBoW with STP shows superior
performance over that without STP. For instance, when using iDT
features, HBoW +STP brings about 5.34%, 5.63%, 9.36% and 6.36%
improvements over HBoW on four datasets, respectively. This
validates the complementary efficiency of STP for our global
representation model - HBoW. Besides, we believe that more
complex STP modes can be employed to get much better perfor-
mances as long as they do not bring about too much computation.

In the lower half of Table 4, we present the state-of-the-art results
on all datasets. Oneata et al. [35] get the highest accuracy on the
challenging Hollywood2 by selecting local features and encoding
methods carefully. Taralova et al. [28] encode non-coarse supervoxels
to BoW codewords, and obtain good results on HMDB51 and UCF
Youtube. losifidis et al. [48] propose the kernel formulation of graph
embedded extreme learning machine (GEKELM) to resolve classifica-
tion problems, and achieve the best results on Olympic Sports. Com-
pared with these works, our HBoW integrated with STP modes
achieves better results by combining geometric information in video

space with discriminative high-order residual information in feature
space. Moreover, our result on HMDB51 is very comparable to the
state-of-the-art accuracy reported in [29]. Peng et al. [29] use the
double-layer FV to construct discriminative action representations.
Though they propose to reduce the dimension of first-layer FV
descriptors, their final action representation still follows the standard
protocol of FV encoding, which is very high-dimensional if there is no
additional principal component analysis (PCA) and Whitening for
dimension reduction. In contrast, our HBoW histogram could be more
compact since it inherently compress high-dimensional residual vec-
tors for all clustering layers.

5. Conclusions

To get compact and efficient action representation, this paper
proposes a hierarchical Bow (HBoW) model which can compress
high-dimensional residual vectors into low-dimensional residual his-
tograms in an iterative manner. Concatenating these histograms yields
the action representation called HBoW histogram which is much more
compact than original VLAD and FV. Therefore, as video features and
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Table 4
Comparing the proposed HBoW with state-of-the-art models on HMDB51, Olympic
Sports, UCF Youtube and Hollywood2 datasets.

Method Local HMDB51 Olympic- U- Hollywood2
feature S Youtube
HBoW HOG-HOF  51.76 74.45 72.09 46.63
iDT 57.95 85.80 85.14 58.55
HBoW +STP HOG-HOF  54.15 80.37 77.05 50.90
iDT 63.29 9143 94.50 64.91
Jiang et al. [40] TrajMF+DT 40.7 80.6 - 59.5
Jain et al. [41] DT+DCS 52.1 83.2 - 62.5
Wang et al. [5] iDT 48.3 77.2 85.4 59.9
Sun and Liu [44] HOG-HOF 443 84.5 80.3 48.66
Oneata et al. [35] MBH+SIFT 54.8 84.6 89.0 63.3
losifidis et al. [36] HOG-HOF - - - 48.5
Taralova et al. [28] iDT 58.8 - 88.9 -
Cai and Qiao [45] iDT 55.9 - - -
Peng et al. [29] iDT 66.79 - 93.77 -
losifidis et al. [47] iDT - 88.89 - 61.69
losifidis et al. [48] iDT - 89.74 - 62.5

datasets are likely to increase in size, our compact model will become
more and more influential on promoting the recognition speed.
Moreover, as our model can encode the high-order statistic informa-
tion of features, it performs strong comparability to the state-of-the-
art models for recognizing the action videos of challenging datasets.
HBoW makes use of residual vectors, therefore two kinds of
frameworks are available according to the assumption that resi-
dual vectors are from non-probabilistic hard assignment, like in
VLAD; or from probabilistic soft assignment, like in FV. In this
paper, we adopt the former one for modeling, and our future work
is to extend our idea with soft assignment which is more com-
plicated but is expected to get more discriminative ability.
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