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Abstract Lidar scanner is a kind of sensor widely used in robotics
visual perception, which provides accurate range data. Scan line
grouping is an extremely fast plane segmentation and edge esti-
mation method tailored for 2D Lidar scanners, which obtain 3D
environment models by assembling 2D scan lines. In this paper, we
propose an adaptive scan line split algorithm to overcome density
shift problem of large scale scenes so that the scan line grouping
method output more accurate plane segments and edges. The sim-
ulated experimental results indicate the proposed method is robust
and promising in humanoid robotics applications.

1 Instruction

3D visual perception is an important technology for a number of applica-
tions related to robotic perception, wild environment mapping, automatic
driving, cultural heritage modelling and architecture. In robotics, it is im-
portant for robots to be able to autonomously navigate and localize itself
in both known or unknown environments. To fulfil navigation, localiza-
tion, environment mapping and path planning tasks, various algorithms for
different sensors are well studied in recent years (Nguyen et al., 2007).

Compared to other kinds of sensors, Laser scanner has many advan-
tages, such as long range, more accurate range measurement, less noise,
high angle resolution and high sampling frequency. However, the time cost
of forming 3D point clouds constrains the application of 2D laser scanner
in robotics. To obtain 3D space models, 2D laser scan lines need to be
assembled due to their rolling angles, this phase may spend several seconds.
Therefore, (Jiang and Bunke, 1994) and (Gutmann et al., 2008) applied
Ramer-Douglas-Peucker algorithm (RDP) (Douglas and Peucker, 1973) be-
fore scan line grouping phase. That is a way to save whole processing time
by partly moving point clouds processing to pre-processing.
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Different from wheel robot, a humanoid robot can step on or over ob-
stacles, but fall down easily with bad contact conditions. So that the shape
and texture of ground and obstacles’ surfaces is the main task for visual per-
ception. Many works have been done in plane segments estimation (Okada
et al., 2001), surface normals estimation(Holzer et al., 2012), (Bormann
et al., 2015) and edge estimation(Asatani et al., 2011). Aiming at real-time
humanoid robot continuous locomotion, we apply a modified RDP method
before organising point clouds data (PCD) from 2D scan lines, adaptively
extract edge point from scan lines and the sensed data is saved as straight
line segments and endpoints. After assembling 3D PCD, a region growing
method is employed to estimate plane segments by using the straight line
segments. the contribution of this paper is that we propose an adaptive
RDP method to split polyline segments which improved the accuracy of
edge point estimation in both close and far areas.

The rest of the paper is organised as follows. Section 2 introduces related
work in visual perception. PCD acquiring and edge point estimation are
described in Section 3, experimental results are talked in Section 3 and this
paper is concluded in Section 5.

2 Related Works

Platform estimation and surface reconstruction with depth sensors (Marton
et al., 2009), (Steinbrucker et al., 2013) are most widely studied families
of methods for unknown environment perception. Point normal is one of
the essential features of 3D point clouds. Rusu et al. introduced a normal
estimation framework in (Rusu, 2010), in which point normal is computed
by analysing the eigenvectors and eigenvalues of a covariance matrix cre-
ated by its k-nearest neighbours. Point clouds are captured from a single
viewpoint, the orientation of normals are flipped toward viewpoint at the
end. This framework has the limitation that the edge and corner points’
normals lose their sharp features. Moreover, in (Ioannou et al., 2012), these
boundary regions are estimated basing on the difference of estimated nor-
mals with different neighbour sizes. Recently, another normal estimation
method designed for organized PCD, which supposed the structure of PCD
data is fully known, in (Holzer et al., 2012) achieved real-time performance
by building integral images of input PCD.

In (Okada et al., 2001), Okada et al. used a randomized 3D Hough
transform to estimate platforms for stair climbing. Another work of Rusu
(Bogdan Rusu et al., 2009) used Random sample consensus (RANSAC) to
generate polygons upon point clouds which are represented by small vol-
umes, called cells or voxels. RANSAC is fast but tends to combine small
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local platforms into big slopes, especially in large clutter scenes. In re-
cent works, Papon et al. (Papon et al., 2013) extends an over-segmentation
approach to real-time stereo data processing, it cluster voxels with same fea-
tures, such as voxels’ position, colour and normal features, to “supervoxels”.
Supervoxels decrease PCD size complexity, real-time plane segmentation is
achieved in (Papon et al., 2013) by using supervoxels as input. However,
this method is designed for dense stereo data. In large scale scenes, the
algorithm suffers from slow space dividing.

Jiang and Bunke proposed a plane segment estimation method in (Jiang
and Bunke, 1994), which grows platforms from straight lines segments.
These straight line segments are extracted as soon as the scan lines are
acquired with original RDP algorithm. This plane estimation method is
extremely fast since most input points are processed only in line segmenta-
tion phase. The sensed data is stored as straight line segments rather than
single sampling points. (Gutmann et al., 2008) developed the former scan
line grouping method by adding a polyline splitting strategy, which is com-
paring point numbers rather than compute the distance of all the point set.
They also build a height map for humanoid robot walking planning basing
on this planar segmentation method. However, the RDP polyline splitting
method may result in wrong splitting as the distance grows further. In this
paper, we proposed an adaptive threshold setting strategy to deal with the
wrong polyline splitting when the sensing distance ranges.

3 Adaptive Straight Line Split

In this paper, the environment information is obtained from a Hokuyo UTM-
30LX-EW 2D laser scanner. Comparing to high-frequency RGB-D stereo
sensors, Microsoft Kinect, laser scanner has the superiorities of a larger field
of view, further detectable range and suitability to bad lighting conditions.
The chosen Hokuyo Lidar has 270◦ field of view, comparing with 57.8◦ of
Kinect. Therefore, the robot can see more features without turning the
neck, which is important for real-time mapping and perception. Moreover,
depth cameras suffer from their baseline problem. Kinect works from about
0.6 m to 4 m, while, Hokuyo UTM30 works in 0.1 m to 60 m with ±1%
error. The baseline limitation makes a big problem for the humanoid robot.
If the robot cannot see the staircase or obstacles in front of its foot, the
stepping has to be finished without visual guidance. In our case, Hokuyo
scanner can help the robot see the stair close to its standing feet accurately.

Hokuyo UTM-30LX-EW returns 1081 points each scan (0.25◦ resolu-
tion) every 25 ms, to achieve dense 3D point clouds, the row data need are
assembled according to the tilting angle of the scanner. This assembling
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Figure 1. A Hokuyo scanner actuated by a dynamixel MX-64 servo
mounted on HRP4’s neck. The 3D purple PCD is assembled from 2D scan
lines (one shown in black color) according to its pitching angle accurately
recorded by the actuator (shown as blue square).

processing limits the frame frequency. In (Osswald et al., 2011), the assem-
bled 3D PCD is noisy with an error up to 5 cm, and the author points out
that the error mainly comes from the estimation of the scanner’s pose from
the joint angle when robot tilts its head. To overcome this problem, our
scanner is actuated by dynamixel MX-64 servo actuator which is fixed on
the robot neck’s joint. As shown in Fig. 1, the robot body keeps static
when the scanner is tilting, and the tilting angle with respect to actuator’s
turning axis is recorded accurately by dynamixel MX-64. Accurate 3D scan
can be achieved by assembling scan lines with their turning angle.

One example of the 2D scan output is shown in Figure 2. The RDP
method is applied to split the polyline to straight line segments. The split
method is shown in Algorithm 1, which processes the scan points in a re-
cursive way: the distance from the query point to the line segment vector
(between the start and end points) are computed and compared with a
threshold dT , if it is bigger than the threshold, this line segment will be
split on this query point, and the resulted two line segments will be added
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Figure 2. Hokuyo Lidar scanner 2D scan line (a), Output of DP split, the
14 scan points are segmented to 5 line segments shown in different colors:
1© 4©, 4© 7©, 8© 9©, 9©10©, 11©14©. In (b), T1 is the split method threshold on the
area close to sensor, while T2 is the threshold on the area far from sensor.
8© and 9© will be split if we use same threshold.

to the input of RDP.

The problem of the RDP is the setting of the threshold value. In the
case of short range stereo vision, this threshold can be set to a fixed value
according to the sensor’s noise situation. However, in the case of Lidar
scanner, the depth date ranges from 0.1 to 30 m, a fix parameter setting
may lead to wrong split and wrong segmentation.

To deal with the large range difference of Lidar scanner raw data, an
adaptive threshold set as:

dT = ζ ∗R (1)

in which, R is the depth data set of the query point, ζ is a value according
to the sensor property.

4 Experimental results

In the experiments, see Figure 3. a white rectangle board is put in front
of the scanner, 1 m, 2m respectively. and (c) and (f) are the wall located
around 10 m away. In the upper scenes, the threshold dT is fixed to 0.03 m,
in the lower scenes, dT is adaptive set as Equation 1, and ζ is set to 0.01. The
results show that in short distance scenes split results are similar, however,
when the scan distance ascends to 10 m, adaptive threshold result in much
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Algorithm 1 RDP split

Input: point cloud data set L : (L1, L2, ...Ln), split distance threshold dT
t, distance function Dn, gravity vector ~g
Output: edge points P

1: for each Li ∈ L do
2: for each point pi ∈ Li do
3: ps ← first point of Li

4: pe ← end point of Li

5: di ← compute distancepi to ( ~ps, pe))
6: if di > dT then
7: P← pi
8: L ← push back( ~ps, pi)and( ~pi, pe)
9: end if

10: end for
11: end for
12: return P

fewer edge points on the flat wall surface, therefore, adaptive threshold
setting make RDP method robust to distance changing.

5 Conclusion and Future works

In this paper we propose an adaptive threshold setting strategy for scan line
grouping plane finding method, and achieved better edge feature estimation
performance even when the scan distance range from 0.1 m to 30 m. These
experiences suggest that the accurate edge point and straight line segments
can be used for efficient plane segmentation and further humanoid applica-
tions, like footstep planning and state estimation. In future work, we will
develop the method for point clouds registration and robot state estimation
applications using straight line vector feature.
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adaptive dT (e) 2 m distance, adaptive dT (f) 10 m distance, adaptive dT
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